Shift photocurrent: Wannier interpolation & dipole selection rules

Julen Ibañez-Azpiroz

Donostia - San Sebastián, Spain Materials Physics Center

DipC

Bulk photovoltaic effect

- Nonlinear light-absorption process of non-centrosymmetric crystals
- Large photovoltage (above band-gap)
- Studied in the 70-80's, renewed interest today Book: Sturman & Fridkin (1992)

Usual photovoltaics need of an interface between two different materials

Bulk photovoltaics

one homogeneous material with broken inversion symmetry

Tan etal, NPJ Comp. Mat. (2016)

Wikipedia

Early measurements

BULK PHOTOVOLTAIC EFFECT IN BaTiO₃

WT.H Koch, R Munser, W Ruppel and P Wurfel

Institut für angewandte Physik, Universitat Karlsruhe, Karlsruhe, Germany

(Received 12 May 1975 by M Cardona)

In melt-grown $BaTiO_3$ single crystals steady-state photocurrents proportional to the light intensity have been observed parallel to the crystallographic *c*-axis The open-circuit photovoltage exceeds the value of the band gap Light polarized parallel and perpendicular to the *c*-axis respectively produces photovoltages with opposite sign This photovoltaic effect is restricted to the ferroelectric phase

PRL 116, 237402 (2016)

PHYSICAL REVIEW LETTERS

week ending 10 JUNE 2016

Enhancement of the Bulk Photovoltaic Effect in Topological Insulators

Liang Z. Tan and Andrew M. Rappe

The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA (Received 14 August 2015; published 8 June 2016)

RESEARCH ARTICLE

OPTICS

Topological nature of nonlinear optical effects in solids

Takahiro Morimoto¹* and Naoto Nagaosa^{2,3}

Science Advances 2016

Recent interest: 2D materials

PRL 119, 067402 (2017) PHYSICAL REVIEW LETTERS

week ending 11 AUGUST 2017

OPEN

DOI: 10.1038/ncomms14176

Large Bulk Photovoltaic Effect and Spontaneous Polarization of Single-Layer Monochalcogenides

Tonatiuh Rangel,^{1,2} Benjamin M. Fregoso,^{2,3} Bernardo S. Mendoza,⁴ Takahiro Morimoto,² Joel E. Moore,² and Jeffrey B. Neaton^{1,2,5}

ARTICLE

Received 10 Aug 2015 | Accepted 6 Dec 2016 | Published 25 Jan 2017

Design principles for shift current photovoltaics

Ashley M. Cook^{1,2,*}, Benjamin M. Fregoso^{1,*}, Fernando de Juan¹, Sinisa Coh^{1,†} & Joel E. Moore^{1,3}

Recent interest: 2D materials

Zhang et. al. Nature (2019)

https://doi.org/10.1038/s41586-019-1303-3

Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes

Y. J. Zhang^{1,2*}, T. Ideue³, M. Onga³, F. Qin³, R. Suzuki³, A. Zak⁴, R. Tenne⁵, J. H. Smet² & Y. Iwasa^{3,6}

Recent interest: 2D materials

Zhang et. al. Nature (2019)

https://doi.org/10.1038/s41586-019-1303-3

Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes

Y. J. Zhang^{1,2*}, T. Ideue³, M. Onga³, F. Qin³, R. Suzuki³, A. Zak⁴, R. Tenne⁵, J. H. Smet² & Y. Iwasa^{3,6}

Recent interest: topology and Weyl semimetals

mature materials

ARTICLES https://doi.org/10.1038/s41563-019-0297-4

Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal

Gavin B. Osterhoudt ¹, Laura K. Diebel¹, Mason J. Gray¹, Xu Yang¹, John Stanco¹, Xiangwei Huang², Bing Shen³, Ni Ni³, Philip J. W. Moll ^{2,4}, Ying Ran¹ and Kenneth S. Burch ¹

And many more

nature ARTICLES PUBLISHED ONLINE: 8 AUGUST 2016 | DOI: 10.1038/NPHOTON.2016.143

Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator

Jonathan E. Spanier^{1,2,3}*[†], Vladimir M. Fridkin^{2,4†}, Andrew M. Rappe⁵, Andrew R. Akbashev¹, Alessia Polemi¹, Yubo Qi⁵, Zongquan Gu³, Steve M. Young⁶, Christopher J. Hawley¹, Dominic Imbrenda³, Geoffrey Xiao¹, Andrew L. Bennett-Jackson¹ and Craig L. Johnson¹

Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet Crl₃

Yang Zhang^{1,2,3}, Tobias Holder¹, Hiroaki Ishizuka⁵, Fernando de Juan^{6,7}, Naoto Nagaosa^{8,9}, Claudia Felser¹ & Binghai Yan⁴

Science

Flexo-photovoltaic effect

Ming-Min Yang,* Dong Jik Kim,* Marin Alexe†

Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.

First-principles scheme:

→ • Wannier interpolation of the shift photocurrent

Applications:

- Dipole selection rules in graphitic BC₂N
- Variety of nonlinear responses in Weyl semimetal TalrTe₄

Second order DC response to external electric field

$$J^{a}(0) = \sigma^{abc}(\omega)E^{b}(\omega)E^{c}(-\omega)$$

Shift photoconductivity
 Sipe and Shkrebtii PRB 2000

$$\sigma^{abc}(\omega) = \frac{\pi |e^3|}{4\hbar^2} \int d\mathbf{k} \sum_{nm} (f_n - f_m) r^c_{mn} r^b_{nm;a} \delta(\omega_{mn} - \omega) + b \leftrightarrow c$$

Transition matrix elements

• Dipole :
$$r^b_{mn} = i \langle u_{\mathbf{k}m} | \partial_{k_b} u_{\mathbf{k}n} \rangle$$

• Covariant derivative: $r_{mn;a}^c = \partial_{k_a} r_{mn}^c - i(A_{mm}^a - A_{nn}^a)r_{mn}^c$

Troublesome quantity due to **k**-space phase indeterminacy of Bloch states

Sum-rule expression

$$\partial_{k_a} r^b_{mn} \propto \sum_l \left(\frac{r^a_{nl} r^b_{lm}}{\omega_{nl}} + \frac{r^b_{nl} r^a_{lm}}{\omega_{lm}} \right)$$

Aversa and Sipe, PRB 1995 Sipe and Shkrebtii, PRB 2000

Unbounded sum over virtual states: truncation error

Amenable to tight-binding formulation Cook et. al., Nat. Comm. 2017

Strategies for calculating the covariant derivative

Discretized expression

King-Smith and Vanderbilt, PRB 1993 Young and Rappe, PRL 2012

$$\langle u_{\mathbf{k}m} | \partial_{k_b} u_{\mathbf{k}n} \rangle = \lim_{\Delta k_b \to 0} \frac{1}{\Delta k_b} \operatorname{Log} \langle u_{\mathbf{k}m} | u_{\mathbf{k}+\Delta k_b \mathbf{q},n} \rangle$$

See also: Young, Zheng and Rappe, PRL 2012, Tan and Rappe, PRL 2016; Tan, Rappe et. al., NPJ 2016; Wang, Rappe et. al., Nat. Comm. 2016

Strategies for calculating the covariant derivative

Discretized expression

King-Smith and Vanderbilt, PRB 1993 Young and Rappe, PRL 2012

$$\langle u_{\mathbf{k}m} | \partial_{k_b} u_{\mathbf{k}n} \rangle = \lim_{\Delta k_b \to 0} \frac{1}{\Delta k_b} \operatorname{Log} \langle u_{\mathbf{k}m} | u_{\mathbf{k}+\Delta k_b \mathbf{q},n} \rangle$$

See also: Young, Zheng and Rappe, PRL 2012, Tan and Rappe, PRL 2016; Tan, Rappe et. al., NPJ 2016; Wang, Rappe et. al., Nat. Comm. 2016

Wannier interpolation

Strategy: k dot p perturbation theory within subspace of Wannierized bands

Wang, Yates, Souza and Vanderbilt PRB 74, 195118 (2006) Yates, Yates, Vanderbilt and Souza PRB 75, 195121 (2007)

-> Matrix elements of Berny connection (special) Aann = i Zun 1 da un 7 Extra term. & Hann / (En - Em) $A_{\alpha}^{\mathcal{H}} = S^{\dagger} A_{\alpha}^{\mathcal{W}} S + i S^{\dagger} \partial_{\alpha} S$ $A_{a,nm} = L u_{h} | \partial_{z} u_{m} \rangle = \sum_{n} ih \cdot n \langle \delta h | \hat{F}_{a} | \hat{R}_{m} \rangle$ > Matrix elements for shift correct (da Ab)nn = ZiRne Zón IFIRM)

Wannier interpolation

PHYSICAL REVIEW B 97, 245143 (2018)

Ab initio calculation of the shift photocurrent by Wannier interpolation

Julen Ibañez-Azpiroz,¹ Stepan S. Tsirkin,¹ and Ivo Souza^{1,2}

See also Wang, Liu, Kang, Gu, Xu and Duan PRB 96, 115147 (2017)

$$|\mathbf{R}n\rangle = \int d\mathbf{k} \sum_{m} U_{nm}(\mathbf{k}) e^{i(\mathbf{r}-\mathbf{R})\cdot\mathbf{k}} |u_{m\mathbf{k}}\rangle$$

$$\boldsymbol{r_{mn;a}^{c}} = \partial_{k_a} r_{mn}^{c} - i(A_{mm}^{a} - A_{nn}^{a})r_{mn}^{c}$$

Final expression for the shift current contains many terms, but all are calculated from **two matrix elements**:

HamiltonianPosition $\langle \mathbf{0}n | \hat{H} | \mathbf{R}m \rangle$ & $\langle \mathbf{0}n | \hat{\mathbf{r}} | \mathbf{R}m \rangle$

Exact treatment of the sum-over-states contribution: no truncation error

 Efficient calculation thanks to Wannier interpolation: beyond 10⁶ k-points feasible, reduce computational time heavily

Implemented into Wannier90 v.3 on and WannierBerri

PHYSICAL REVIEW B 107, 205101 (2023)

Including many-body effects into the Wannier-interpolated quadratic photoresponse tensor

Peio Garcia-Goiricelaya[©],^{1,*} Jyoti Krishna[©],¹ and Julen Ibañez-Azpiroz[©],^{1,2} ¹Centro de Física de Materiales, Universidad del País Vasco UPV/EHU, 20018 San Sebastián, Spain ²Ikerbasque Foundation, 48013 Bilbao, Spain

$$\begin{aligned} \sigma_2^{abc}(1,2,3) &= \iiint \sum_{\text{def}} \varepsilon^{-1,da}(1,4) \sigma_2^{\text{KS},def}(4,5,6) \varepsilon^{-1,eb}(5,2) \varepsilon^{-1,fc}(6,3) d4d5d6 \\ &+ \iiint \sum_{\text{def}} \sigma_1^{ad}(1,4) K_{\text{xc},2}^{\text{def}}(4,5,6) \sigma_1^{eb}(5,2) \sigma_1^{fc}(6,3) d4d5d6. \end{aligned}$$

First-principles scheme:

• Wannier interpolation of the shift photocurrent

Applications:

 \rightarrow • Dipole selection rules in graphitic BC₂N

• Variety of nonlinear responses in Weyl semimetal TalrTe₄

Search for non-trivial response: graphitic BC₂N

Space group 25 Pmm2, A2 polytype: **no inversion symmetry**

Pan, Sun & Chen, PRB 2006

Band structure

- Large magnitude for a semiconductor
- Peaks in the suitable energy range

(10⁶ k-points needed to converge integrals)

Shift-current spectrum

Back to the structure

Band-edge mirror eigenvalues

Microscopic matrix element

$$\sigma^{abb}(\omega) \propto \int_{\mathrm{BZ}} \sum_{n,m} (f_n - f_m) r^b_{nm} r^{b;a}_{mn} \, \delta(\omega_{nm} - \omega) d\mathbf{k}$$

Dipole selection rules, distinguish two cases:

1. States have **same** parity

2. States have **opposite** parity

$$r_{nm}^y = 0$$

Microscopic matrix element

$$\sigma^{abb}(\omega) \propto \int_{\mathrm{BZ}} \sum_{n,m} \left(f_n - f_m \right) \, r^b_{nm} r^{b;a}_{mn} \, \delta(\omega_{nm} - \omega) d\mathbf{k}$$

Dipole selection rules, distinguish two cases:

2. States have **opposite** parity

Material realization

Realized in graphitic BC,N

PHYSICAL REVIEW RESEARCH 2, 013263 (2020)

Directional shift current in mirror-symmetric BC_2N

Julen Ibañez-Azpiroz¹, Ivo Souza¹,^{1,2} and Fernando de Juan^{2,3}

2. States have **opposite** parity

First-principles scheme:

• Wannier interpolation of the shift photocurrent

Applications:

- Dipole selection rules in graphitic BC₂N
- → Variety of nonlinear responses in Weyl semimetal TalrTe₄

Optical measurements in TalrTe₄

ARTICLES https://doi.org/10.1038/s41563-019-0296-5 mature materials

Nonlinear photoresponse of type-II Weyl semimetals

Junchao Ma¹, Qiangqiang Gu¹, Yinan Liu¹, Jiawei Lai¹, Peng Yu², Xiao Zhuo¹, Zheng Liu¹, Jian-Hao Chen^{1,3*}, Ji Feng^{1,3,4*} and Dong Sun^{1,3*}

130 mA/W: ranks amongst largest photoresponses reported to date

TalrTe₄: basic facts

Ta Ir Te

- Type II Weyl semimetal
- Space group *Pmn2*₁, acentric
- 4 metallic bands
- 2 pairs of Weyl points are in the $k_z = 0$ plane, ~70 meV above Fermi level

Shift-current transition matrix element between Weyl bands

(3 x 10⁶ k-points employed)

Shift-current transition matrix element between Weyl bands

10^6 0.2 10^{4} 0.1 10^{2} $k_y \left({\rm \AA}^{-1} \right)$ 0 0 -10^{2} -0.1 -10^{4} -0.2 -10^{6} 0.1 -0.10 -0.20.2 $k_x (\text{\AA}^{-1})$

Pronounced enhancement of integrand at the Weyl points

Shift-current transition matrix element between Weyl bands

Large enhancement of integrand at the Weyl points

... but they do not contribute due to occupation factors

Beyond the quadratic response

Nonlinear photoresponse of type-II Weyl semimetals

Junchao Ma¹, Qiangqiang Gu¹, Yinan Liu¹, Jiawei Lai¹, Peng Yu², Xiao Zhuo¹, Zheng Liu¹, Jian-Hao Chen^{1,3*}, Ji Feng^{1,3,4*} and Dong Sun^{1,3*}

The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe₄ are revealed in the photoresponses, which are related to divergence of the Berry curvature. TaIrTe₄ exhibits a large photoresponsivity of 130.2 mA W⁻¹—with 4 µm excitation in an unbiased field-effect transistor at room temperature—arising from the third-order nonlinear optical response, approaching the performance of commercial low-temperature detectors. In addition, the circularly polarized galvanic response is enhanced at 4 µm, possibly due to the same Berry curvature singularity enhancement. Considering the optical selection rule of chiral Weyl cones, this may open the door for studying and controlling the chiral polarization of Weyl fermions with an electric field in addition to the optical helicities.

Third-order contribution: d.c. electric field ("built-in")

 $J_a(0) \propto E_b(\omega) E_c(-\omega) \cdot E_d(0)$

Accounting for a d.c. field: competing effects

• Semiclassical prescription:

$$f_n(\mathbf{k}) \to f_n(\mathbf{k} + \frac{e\tau \mathbf{E}(0)}{\hbar}) \simeq f_n(\mathbf{k}) + \frac{e\tau \mathbf{E}(0)}{\hbar} \cdot \frac{\partial f_n(\mathbf{k})}{\partial \mathbf{k}}$$

→ "current-induced" <u>shift</u> and <u>injection</u> currents

Accounting for a d.c. field: competing effects

• Semiclassical prescription:

$$f_n(\mathbf{k}) \to f_n(\mathbf{k} + \frac{e\tau \mathbf{E}(0)}{\hbar}) \simeq f_n(\mathbf{k}) + \frac{e\tau \mathbf{E}(0)}{\hbar} \cdot \frac{\partial f_n(\mathbf{k})}{\partial \mathbf{k}}$$

→ "current-induced" <u>shift</u> and <u>injection</u> currents

Intrinsic third-oder d.c. current: the jerk current

$$J_{\text{jerk}}^{a}(0) = \tau^{2} \cdot \iota_{abcd}^{(3)}(\omega) \cdot E_{b}(\omega) E_{c}(-\omega) \cdot E_{d}(0)$$

PHYSICAL REVIEW LETTERS 121, 176604 (2018)

Jerk Current: A Novel Bulk Photovoltaic Effect

Benjamin M. Fregoso,¹ Rodrigo A. Muniz,^{2,3} and J. E. Sipe³ ¹Department of Physics, Kent State University, Kent, Ohio 44240, USA ²Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 USA ³Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Accounting for a d.c. field: competing effects

• Semiclassical prescription:

$$f_n(\mathbf{k}) \to f_n(\mathbf{k} + \frac{e\tau \mathbf{E}(0)}{\hbar}) \simeq f_n(\mathbf{k}) + \frac{e\tau \mathbf{E}(0)}{\hbar} \cdot \frac{\partial f_n(\mathbf{k})}{\partial \mathbf{k}}$$

→ "current-induced" <u>shift</u> and <u>injection</u> currents

Intrinsic third-oder d.c. current: the jerk current

$$J_{\text{jerk}}^{a}(0) = \tau^{2} \cdot \iota_{abcd}^{(3)}(\omega) \cdot E_{b}(\omega) E_{c}(-\omega) \cdot E_{d}(0)$$

$$u_{abcd}^{(3)}(\omega) = \frac{2\pi e^4}{\hbar^3} \int_k \sum_{n,m} f_{nm} \frac{\partial^2 \omega_{nm}}{\partial k_a \partial k_d} r_{nm}^b r_{mn}^c \delta(\omega_{nm} - \omega)$$

Size and polar distribution of the various third-order terms

Estimates for the d.c. field and relaxation time: $|{f E}(0)|\sim 10^5~{ m V/m},~~\tau\sim 10^{-14}~{ m s}$

Size and polar distribution of the various third-order terms

PHYSICAL REVIEW B 107, 205204 (2023)

Editors' Suggestion

Ab initio study of the nonlinear optical properties and dc photocurrent of the Weyl semimetal TaIrTe₄

Álvaro R. Puente-Uriona^(b),^{1,*} Stepan S. Tsirkin^(b),^{1,2} Ivo Souza^(b),^{1,2} and Julen Ibañez-Azpiroz^(b),²

First-principles scheme:

• Wannier interpolation of the shift photocurrent

Applications:

- Dipole selection rules in graphitic BC₂N
- Variety of nonlinear responses in Weyl semimetal TalrTe₄

Many body effects

• KS and MB microscopic conductivity tensors are linked through the chain rule:

• 1^{st} order:

$$\sigma_1{}^{ab}(1,2) = \int \sum_c \sigma_1^{\mathsf{KS}{}^{ac}}(1,3) \epsilon^{-1}{}^{cb}(3,2) d3$$
$$\epsilon^{ab}(1,2) = \delta(1,2) \delta_{ab} - \int \sum_c F_{\mathsf{Hxc}}{}^{ac}(1,3) \sigma_1^{\mathsf{KS}{}^{cb}}(3,2) d3$$

• 2^{nd} order:

$$\sigma_2{}^{abc}(1,2,3) = \sum_{def} \iiint \epsilon^{-1} \epsilon^{-1} \epsilon^{ad}(1,4) \sigma_2^{\mathsf{KS}def}(4,5,6) \epsilon^{-1} \epsilon^{eb}(5,2) \epsilon^{-1} \epsilon^{fc}(6,3) d4d5d6$$
$$+ \sum_{def} \iiint \sigma_1{}^{ad}(1,4) G_{\mathsf{xc}}{}^{def}(4,5,6) \sigma_1{}^{eb}(5,2) \sigma_1{}^{fc}(6,3) d4d5d6$$

• Tensorial generalization of the scalar equations of TD-DFT | Luppi et al., PhysRevB.82.235201 (2010)

Garcia-Goiricelaya, Krishna, IA PRB 107, 205101 (2023)