Quasi-symmetry protected topology in CoSi

Chunyu(Mark) Guo, Jonas Diaz, Carsten Putzke, Philip J. W. Moll

MQM, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

Lunhui Hu, Chaoxing Liu

Department of Physics, The Pennsylvania State University B. Andrei Bernevig Department of Physics, Princeton University

Kaustuv Manna, Feng-Ren Fan, Yan Sun, Chandra Shekhar, Claudia Felser

Max-Planck-Institute for Chemical Physics of Solids

Nature physics 18, 813–818 (2022) See also: News & Views, Nat. Phys. 18, 731-732 (2022)

The broken cup

Topology protects characteristics of the band structure against perturbations.

But what if I need a cup?

- Reminders: Approximate symmetries and hidden symmetries.
- The semi-metal CoSi is too simple
- What is a quasi-symmetry
- Growing classes of quasi-symmetric materials

Massless Dirac Fermions in Graphene

Carriers in Graphene behave as massless Dirac particles.

Weak but finite spin-orbit coupling induces a gap of 42 μ eV (~0.4K).

C.L. Kane and E.J. Mele, PRL 95, 226801 (2005)

- Topology of electronic spectra is well defined mathematically by the choice of model, which may not resemble nature.
- The model that captures all effects at relevant energy scales will describe reality best.
- Mathematical classification may not be the ultimate judge for novel applications.

Symmetries simplify physics problems

Approximate symmetry

Too high symmetry of the model: **spin-rotation symmetry**. But is it relevant? It remains an **approximate symmetry**.

 $H = H_D$

Carriers in Graphene behave as massless Dirac particles.

 $H = H_D + H_{SOC}$

Weak but finite spin-orbit coupling induces a gap of 42 μ eV (~0.4K).

C.L. Kane and E.J. Mele, PRL 95, 226801 (2005)

Hidden symmetry

Radially symmetric potential V(r) \rightarrow Symmetry SO(3) \rightarrow Classical orbits fall in plane perp. to angular momentum.

Classical gravity: All solutions of the Kepler problem are *closed* ellipses!

Solution: $V(r) \sim 1/r$ has a higher symmetry than SO(3), namely SO(4).

Famous example of a hidden symmetry and hidden conservation law (Lenz-Runge-Kutta vector) $A = p \times L - mke_r$

Not all relevant symmetries are directly apparent. Look out for simpler behavior than symmetry would predict.

It could be possible that approximate, hidden symmetries stabilize (quasi-)degeneracies that are practically indistinguishable from true symmetries.

- Reminders: Approximate symmetries and hidden symmetries.
- The semi-metal CoSi is too simple
- What is a quasi-symmetry
- Growing classes of quasi-symmetric materials

Basic properties of CoSi

Chiral cubic structure

Space group: P2₁3 (198) No inversion center Chiral axis along [111]

Basic properties of CoSi

Basic properties of CoSi

Long Fermi-arc

Long Fermi-arc observed in ARPES measurements.

[1] Z. Rao et al., Nature 567, 496 (2019).[2] D. S. Sanchez et al., Nature 567, 500505 (2019).

Fermi surface overview

Fermi surface topology from quantum oscillations

Onsager relation:
$$F = \frac{\hbar}{2\pi e}S$$

Frequency of QO (M,R,..) = Extremal cross-section of Fermi surface

Fermi surface topology: slice and view

Weyl fermion

4 bands: 2 orbital, 2 spin With SOC Full FS

First ignore SOC (only 2 surfaces)

CoSi is too simple!

Many before us: D. Wu et al., CPL 36, 077102 (2019); X. Xu et al., PRB 100, 045104 (2019); H. Wang et al., PRB 102, 115129 (2020);...

Why are the QO so simple?

N. Huber et al., PRL 129, 026401 (2022)

Magnetic breakdown

Compare energy with barrier height

$$\hbar\omega_c = \frac{eB}{m_{eff}} \sim \Delta E$$

Breakdown orbits

Tunneling physics

Hidden in plain sight

Predicted orbits for B//[110]

Why are there tiny gaps all over the place at low-symmetry k-points?

Near-degeneracies fall on low-symmetry rings on Fermi surface.

Now we can construct the whole plane in the Brillouin zone!

Now we can construct the whole plane in the Brillouin zone!

Construction of 3D topological planes

What is a quasi-symmetry?

Quasi-symmetry protected plane

Crystalline-symmetry protected plane

Marc A. Wilde et al., Nature 594,374 (2021)

Planes of near-degeneracy at low-symmetry k-points that span the entire BZ.

C. Guo et al., Nat. Phys. 18, 813–818 (2022)

- Reminders: Approximate symmetries and hidden symmetries.
- The semi-metal CoSi is too simple
- What is a quasi-symmetry
- Growing classes of quasi-symmetric materials

Quasi-symmetry

H: full Hamiltonian H₁: dominant part

 $H = H_1 + H_2 + \cdots$ (e.g. $k \cdot p$ expansion)

Quasi-symmetry: True symmetry of the first order term in a $k \cdot p$ expansion that is not a symmetry of the full Hamiltonian.

Quasi-symmetry

Mirror symmetry operation

Mirror symmetry operation: Universal operation on the whole system.

Quasi-symmetry

Quasi-symmetry operation: *Local* operation on *part* of the system.

Lun-Hui Hu, Chunyu Guo et al., PRB 107, 125145 (2023)

Quasi-symmetry operation: *Local* operation on *part* of the system.

Lun-Hui Hu, Chunyu Guo et al., PRB 107, 125145 (2023)

Breaking the chains of symmetry

Without the stringent symmetry requirements for real degeneracies, quasi-degeneracies can exist over wide ranges in energy and extended regions of k-space.

Neumann-Wigner theorem: two level system crossing needs three tuning parameters.

Importance of quasi-symmetry: giant Berry curvature

R

Μ

Importance of quasi-symmetry: giant Berry curvature

No chemical potential tunning required!

Importance of quasi-symmetry: giant Berry curvature *dipole*

chiral-distribution of Berry curvature dipole (non-linear Hall effect)

Importance of quasi-symmetry: Robust against perturbations

Space group 198 Symmetry operation: $C_{3,111}$, $C_{2x,2y,2z}$, σ_d

Expected breakdown orbits

Quasi-symmetry robust against perturbations

- Reminders: Approximate symmetries and hidden symmetries.
- The semi-metal CoSi is too simple
- What is a quasi-symmetry
- Growing classes of quasi-symmetric materials

Generality of quasi-symmetry

Natural extension to other 11-compounds with the same crystalline structure.

Model/SG	kp model	Nodal plane	Material
I 19 R R1#R1	$\begin{aligned} \mathcal{H}_{1} &= A_{1}k_{x}\sigma_{3}\tau_{3} + A_{2}k_{y}\sigma_{3}\tau_{1} + A_{3}k_{z}\sigma_{0}\tau_{2}, \\ \mathcal{H}_{2} &= B_{1}k_{x}^{2} + B_{2}k_{y}^{2} + B_{3}k_{z}^{2} + k_{x}k_{y}(B_{4}\sigma_{3}\tau_{2} + B_{5}\sigma_{2}\tau_{0} + B_{6}\sigma_{1}\tau_{0}) \\ & + k_{x}k_{z}(B_{7}\sigma_{2}\tau_{3} + B_{8}\sigma_{0}\tau_{1} + B_{9}\sigma_{1}\tau_{3}) + k_{y}k_{z}(B_{10}\sigma_{2}\tau_{1} + B_{11}\sigma_{0}\tau_{3} + B_{12}\sigma_{1}\tau_{1}), \\ \mathcal{H}_{soc} &= \lambda_{1}s_{x}\sigma_{3}\tau_{3} + \lambda_{2}s_{y}\sigma_{3}\tau_{1} + \lambda_{3}s_{z}\sigma_{0}\tau_{2}. \end{aligned}$	$\begin{aligned} (A_1\lambda_1k_x)^2 + (A_2\lambda_2k_y)^2 + (A_3\lambda_3k_z)^2 &= (C_1^2 + C_2^2 + C_3^2)k_x^2k_y^2k_z^2.\\ C_1 &= -A_1B_{12} + A_2B_9 + A_3B_5, C_2 &= A_1B_{10} - A_2B_7 + A_3B_6\\ C_3 &= A_1B_{11} + A_2B_8 + A_3B_4. \end{aligned}$	P7Th, GeMn, O32P4W8, CuErS2, CuS2Yb, La3MoO7, AgErSe2, AgSe2Yb, Ce2Ga3Ru2, C14FeNa, H5CuIO7, H5CuO5P, O8P2Rb2V, CuLiO9P3, CuNaO4P, MoNaO8P2, BiFeO9Se3, CuO5TiZr, BaClCuO4P
II 92 A A1#A2 96 A A1#A2	$\begin{split} \mathcal{H}_{1} &= A_{1}(k_{x}\sigma_{0}\tau_{2} - k_{y}\sigma_{3}\tau_{1}) + A_{2}k_{z}\sigma_{3}\tau_{3}, \\ \mathcal{H}_{2} &= B_{1}(k_{x}^{2} + k_{y}^{2}) + B_{2}k_{z}^{2} + (k_{x}^{2} - k_{y}^{2})(B_{3}\sigma_{2}\tau_{1} + B_{4}\sigma_{1}\tau_{1}) \\ &+ k_{x}k_{z}(B_{5}\sigma_{0}\tau_{1} + B_{6}\sigma_{1}\tau_{0} + B_{7}\sigma_{2}\tau_{0}) + k_{y}k_{z}(B_{5}\sigma_{3}\tau_{2} - B_{6}\sigma_{2}\tau_{3} + B_{7}\sigma_{1}\tau_{3}). \\ \mathcal{H}_{soc} &= \lambda_{1}(s_{x}\sigma_{0}\tau_{2} - s_{y}\sigma_{3}\tau_{1}) + \lambda_{2}s_{z}\sigma_{3}\tau_{3}. \end{split}$	$\begin{split} (A_1\lambda_1)^2(k_x^2+k_y^2)+(A_2\lambda_2)^2k_z^2 &= (C_1^2+C_2^2)k_x^2k_y^2k_z^2\\ C_1 &= A_1B_6+A_2B_3 \text{ and } C_2 = -A_1B_7+A_2B_4 \end{split}$	MnO8PbS2, Si4V5, Ce5Si4, La5Si4, Mn5Si2, Nb5Si4, Rh5Si2, Si4Ta5, Si4Ti5, FeK3O2, K3NiO2, FeNaO2, NiO2Rb3, Sc2Si4V3, Cr3Sc2Si4, Re3Sc2Si4,
III 198 R R1#R3	$\begin{split} \mathcal{H}_{1} &= A_{1}(k_{x}\sigma_{3}\tau_{1} - k_{y}\sigma_{0}\tau_{2} - k_{z}\sigma_{3}\tau_{3}),\\ \mathcal{H}_{2} &= B_{1}(k_{x}^{2} + k_{y}^{2} + k_{z}^{2}) + k_{x}k_{y}(-2B_{2}\sigma_{2}\tau_{1} - B_{3}\sigma_{0}\tau_{3} + 2B_{4}\sigma_{1}\tau_{1}) \\ &+ k_{x}k_{z} \left[B_{2}(\sigma_{1}\tau_{0} - \sqrt{3}\sigma_{2}\tau_{0}) - B_{3}\sigma_{3}\tau_{2} + B_{4}(\sqrt{3}\sigma_{1}\tau_{0} + \sigma_{2}\tau_{0}) \right] \\ &+ k_{y}k_{z} \left[B_{2}(-\sqrt{3}\sigma_{1}\tau_{3} + \sigma_{2}\tau_{3}) + B_{3}\sigma_{0}\tau_{1} + B_{4}(-\sigma_{1}\tau_{3} - \sqrt{3}\sigma_{2}\tau_{3}) \right] \\ \mathcal{H}_{soc} &= \lambda_{1}(s_{x}\sigma_{3}\tau_{1} - s_{y}\sigma_{0}\tau_{2} - s_{z}\sigma_{3}\tau_{3}). \end{split}$	$\lambda_1^2(k_x^2+k_y^2+k_z^2)=B_3^2k_x^2k_y^2k_z^2$	F2Pd, FeP, AlAu4, AlCu4, AlPd, AlPt, Al7Sr8, AuBe, CoGe, CoSi, GaPd, GaPt, GeMn, GeRh, HfSn, MnSi, NiSi, ReSi, RhSi, RhSn, SiTc, NiPS, AsNiS, AsPdS, BaPPt, ClNaO3, NiSSb, PdSSb, PtSSb, AlAuBa, AsNiSe, AsPdSe, AuBaGa, BaGePt, BaPdSi, BaPtSi, BiNiSe, BiPdSe, BiPdTe, BiPtSe, BiPtTe, FePtSb, IrLaSi, IrNdSi, LaRhSi, NiSbSe, PdSbSe, PdSbTe, PdSiSr, PtSbSe, C3H3LiMnO6,
IV 198 R R2#R2	$\begin{aligned} \mathcal{H}_{1} &= A_{1}(k_{x}\sigma_{3}\tau_{1} - k_{y}\sigma_{0}\tau_{2} - k_{z}\sigma_{3}\tau_{3}), \\ \mathcal{H}_{2} &= B_{1}(k_{x}^{2} + k_{y}^{2} + k_{z}^{2}) + k_{x}k_{y}(B_{2}\sigma_{2}\tau_{1} + B_{3}\sigma_{0}\tau_{3} + B_{4}\sigma_{1}\tau_{1}) \\ &+ k_{x}k_{z}(B_{2}\sigma_{1}\tau_{0} + B_{3}\sigma_{3}\tau_{2} - B_{4}\sigma_{2}\tau_{0}) + k_{y}k_{z}(B_{2}\sigma_{2}\tau_{3} - B_{3}\sigma_{0}\tau_{1} + B_{4}\sigma_{1}\tau_{3}). \\ \mathcal{H}_{soc} &= \lambda_{1}(s_{x}\sigma_{3}\tau_{1} - s_{y}\sigma_{0}\tau_{2} - s_{z}\sigma_{3}\tau_{3}). \end{aligned}$	$\lambda_1^2(k_x^2+k_y^2+k_z^2)=9(B_2^2+B_3^2+B_4^2)k_x^2k_y^2k_z^2.$	SiV, Al2Sr3, Ba8Ga7, CrGe, CrSi, Ga7Sr8, HfSb, SbZr, SiTa, AuGaV3, BalrP, Cu2O4Se, EulrP, IrPSr, <u>AsBaPt</u> , AuGaNb3, AuGaTa3, CaPtSi, CelrSi, CrPtSb, EuGePt, EuPdSi, EuPtSi, GePtSr, PtSiSr,
V 212 R R1#R2 213 R R1#R2	$\begin{split} \mathcal{H}_1 &= A_1 (k_x \sigma_3 \tau_1 - k_y \sigma_0 \tau_2 - k_z \sigma_3 \tau_3), \\ \mathcal{H}_2 &= B_1 (k_x^2 + k_y^2 + k_z^2) + k_x k_y (B_2 \sigma_2 \tau_1 + B_3 \sigma_1 \tau_1) \\ &+ k_x k_z (B_2 \sigma_1 \tau_0 - B_3 \sigma_2 \tau_0) + k_y k_z (B_2 \sigma_2 \tau_3 + B_3 \sigma_1 \tau_3), \\ \mathcal{H}_{\text{soc}} &= \lambda_1 (s_x \sigma_3 \tau_1 - s_y \sigma_0 \tau_2 - s_z \sigma_3 \tau_3). \end{split}$	$\lambda_1^2(k_x^2+k_y^2+k_z^2)=9(B_2^2+B_3^2)k_x^2k_y^2k_z^2$	Mo3NPd2, CAI2Ta3, CAI2Nb3, AI2NNb3, Ag3AuS2, Ga2NV3, C7V8, C5Zr8,
VI 212 R R3 213 R R3	$\begin{aligned} \mathcal{H}_{1} &= A_{1}(\overline{k_{x}\sigma_{0}\tau_{1} - k_{y}\sigma_{3}\tau_{2} - k_{z}\sigma_{3}\tau_{3}}), \\ \mathcal{H}_{2} &= B_{1}(k_{x}^{2} + k_{y}^{2} + k_{z}^{2}) + B_{2}(k_{x}k_{y}\sigma_{0}\tau_{3} + k_{x}k_{z}\sigma_{0}\tau_{2} - k_{y}k_{z}\sigma_{3}\tau_{1}) \\ &+ B_{3}\left[2k_{x}k_{y}\sigma_{1}\tau_{2} + k_{x}k_{z}(\sqrt{3}\sigma_{2}\tau_{3} + \sigma_{1}\tau_{3}) + k_{y}k_{z}(\sqrt{3}\sigma_{1}\tau_{0} + \sigma_{2}\tau_{0})\right] \\ \mathcal{H}_{\text{soc}} &= \lambda_{1}(s_{x}\sigma_{0}\tau_{1} - s_{y}\sigma_{3}\tau_{2} - s_{z}\sigma_{3}\tau_{3}). \end{aligned}$	$\lambda_1^2(k_x^2+k_y^2+k_z^2)=9B_2^2k_x^2k_y^2k_z^2.$	Mo3NPt2, Mo3NNi2, Co2Mo3N, CMo3Re2 , CRe2W3, Mn2Zn8 , Mg3Ru2, Fe2Re3, Au2Nb3, Ga2V3, Mn, C2Na , BLi2Pd3 , BLi2Pt3, Ge3Li2NiO8 , Li2MgMn3O8,

Various promising candidates:

Chiral semimetals (SG 198): FeP, AlCu4, AlPd, AlPt, AuBe, CoGe, CoSi, GaPd, GaPt, GeMn, GeRh, HfSn, MnSi, NiSi, ReSi, RhSi, RhSn, SiTc...

Kondo semimetals: YbCuS₂, YbAgSe₂, CeRu₂Ga₃, CeIrSi, EuPtSi...

Superconductors: Li₂Pd₃B, Li₂Pt₃B, CrAs (@1GPa), LaRhSi, CaPtSi...

Summary and outlook

See all our research & find interesting

 Ω_{xy} (Å⁻²)

PD and PhD opportunities

Quasi-symmetry

A new flavor of topological matter.

A general distribution of Berry curvature dipole.

A new class of topological materials with remarkable resilience to perturbations (strain etc.).

C. Guo et al., Nature physics 18, 813–818 (2022); See also: News & Views, Nat. Phys. 18, 731-Lun-Hui Hu, Chunyu Guo et al., PRB 107, 125145 (2023) arXiv:2209.02745; arXiv:2108.02279