Wannier functions, electric polarization, orbital magnetoelectric coupling, and axion electrodynamics

LOOK INSIDE

Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and Topological Insulators DAVID VANDERBILT

Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and

Topological Insulators
AUTHOR: David Vanderbilt, Rutgers University, New Jersey

DATE PUBLISHED: December 2018 AVAILABILITY: In stock FORMAT: Hardback ISBN: 9781107157651

Rate & review

David Vanderbilt Rutgers University

Slides available at https://is.gd/inFID2

Outline

- Wannier functions for occupied subspace
 - Electric polarization
 - -Topological obstruction
- Wannier functions as a basis
 - -Wannier interpolation
- Orbital magnetoelectric coupling
 - -Axion electrodynamics

H₂ molecule

He₂ molecule

He₂ molecule

Construction of LMOs

Given a set of occupied states $|\Psi_n\rangle$, $n = \{1, N\}$ Find unitary transformation to $|\phi_i\rangle$, $j = \{1, N\}$

$$|\phi_j\rangle = \sum U_{nj} |\psi_n\rangle$$

such that the $|\phi_j\rangle$ are maximally localized. Foster-Boys criterion: Minimize

$$\Omega = \sum_{j} \left[\langle \phi_j | r^2 | \phi_j \rangle - | \langle \phi_j | \mathbf{r} | \phi_j \rangle |^2 \right]$$

Apply Foster-Boys criterion for crystalline solids?

Problem: $\langle \psi_{nk} | x | \psi_{nk} \rangle$ and $\langle \psi_{nk} | x^2 | \psi_{nk} \rangle$ are ill defined!

Maximally localized Wannier functions

N. Marzari and D. Vanderbilt, "Maximally localized generalized Wannier functions for composite energy bands," Phys. Rev. B 56, 12847 (1997). (*journal link*, *local copy*)

I. Souza, N. Marzari, and D. Vanderbilt, "Maximally-localized Wannier functions for entangled energy bands," Phys. Rev. B 65, 035109 (2002). (*journal link*, *local copy*)

N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, and D. Vanderbilt, "Maximally localized Wannier functions: Theory and applications," Rev. Mod. Phys. 84, 1419 (2012). (*journal link*, *local copy*)

https://wannier.org

A.A. Mostofi, Y.S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, "Wannier90: A tool for obtaining maximally-localized Wannier functions from energy bands," Comput. Phys. Commun. 178, 685 (2008). (*journal link*, *local preprint*)

A.A. Mostofi, J.R. Yates, G. Pizzi, Y.S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, "An updated version of Wannier90: A tool for obtaining maximally-localized Wannier functions from energy bands," Comput. Phys. Commun. 185, 2309 (2014). (*journal link*, *local copy*)

G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, D. Marchand, A. Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A.A. Mostofi, and J.R. Yates, "Wannier90 as a community code: New features and applications," J. Phys. Cond. Matt. 32, 165902 (2020). (*journal link*)

WANNIER 90

Maximally localized Wannier functions

$$\widetilde{\psi}_{j\mathbf{k}} = \sum_{n} U_{nj}(\mathbf{k}) |\psi_{n\mathbf{k}}\rangle$$
Pseudo-Bloch
(smooth in k)

$$\widetilde{\psi}_{n\mathbf{k}} = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d^3k \, e^{-i\mathbf{k}\cdot\mathbf{R}} |\widetilde{\psi}_{n\mathbf{k}}\rangle$$
Wannier functions
(LMO's)
Wannier functions $\rightarrow |w_n\rangle = |w_{0,n}\rangle$
Minimize $\Omega = \sum \left[\langle w_n | r^2 | w_n \rangle - |\langle w_n | \mathbf{r} | w_n \rangle |^2 \right]$

n

RUTGERS

Bloch states

Bloch wavefunction

Choose Wannier functions as

$$w_n(\mathbf{r} - \mathbf{R}) = \int_{BZ} \psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Form wave-packet = "Wannier function"

Crystal in real space:

Brillouin zone in reciprocal space:

Crystal in real space:

Four occupied bands

Four occupied bands

Expect four WFs per cell

Multiband Wannier construction

$$\widetilde{\psi_{jk}} = \sum_{n} U_{nj}(\mathbf{k}) |\psi_{nk}\rangle$$
Heigenstates (Bloch)
Pseudo-Bloch
(smooth in k)

$$\widetilde{\psi_{jk}} = \frac{V}{(2\pi)^3} \int_{BZ} d^3k \, e^{-i\mathbf{k}\cdot\mathbf{R}} |\widetilde{\psi}_{nk}\rangle$$
Wannier functions
(LMO's)
Wannier functions
in home unit cell
$$w_n = |w_{0,n}\rangle$$

Minimize
$$\Omega = \sum_{n} \left[\langle w_n | r^2 | w_n \rangle - | \langle w_n | \mathbf{r} | w_n \rangle |^2 \right]$$

Minimize spread relative to center

Choose unitary matrices to minimize quadratic spread

 $\Omega = \sum \left[\langle r^2 \rangle_n - \langle \mathbf{r} \rangle_n^2 \right]$ nwhere $\langle r^2 \rangle_n = \langle w_n | r^2 | w_n \rangle , \quad \langle \mathbf{r} \rangle_n = \langle w_n | \mathbf{r} | w_n \rangle .$ QMS23, August 21-25, 2023

Wannier functions: Si

Wannier functions: GaAs

WFs in SrTiO₃

Mapping to Wannier centers

Mapping to Wannier centers

Outline

- Wannier functions for occupied subspace
 - -Electric polarization
 - -Topological obstruction
- Wannier functions as a basis
 - -Wannier interpolation
- Orbital magnetoelectric coupling
 - -Axion electrodynamics

The Problem: Polarization

Textbook illustration

More realistic picture

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?

 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) d^3 r$

 $d_{cell} \approx 0$

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?

 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) d^3 r$

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?

 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) d^3 r$

Review: Bloch's Theorem

Define the cell-periodic Bloch function $u_k(x)$:

$$u_k(x) = e^{-ikx}\psi_k(x)$$

Theory of electric polarization

 $\mathbf{P} \propto \Sigma_{nk} \langle \psi_{nk} | \mathbf{r} | \psi_{nk} \rangle$? Ill-defined... Recall that in quantum mechanics $p \rightarrow -i \hbar V_r$ so it is plausible that $r \rightarrow i V_{k}$ $P \propto \Sigma_{nk} \langle \psi_{nk} | i \nabla_{k} | \psi_{nk} \rangle$? But also ill-defined $\mathbf{P} \propto \sum_{nk} \langle U_{nk} | i \nabla_{\mathbf{k}} | U_{nk} \rangle$? Yes!

Theory of electric polarization

Resta, 1992:
$$\Delta \mathbf{P} = \int \left(\frac{d\mathbf{P}}{dt}\right) dt$$

King-Smith and Vanderbilt, 1993:

 $\Delta \mathbf{P} = \mathbf{P}(t_2) - \mathbf{P}(t_1)$ where

$$\mathbf{P} = \frac{ie}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

where
$$\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{nk}(\mathbf{r})$$

Simplify: 1 band, 1D

$$\mathbf{P} = \frac{-e}{2\pi} \int_{BZ} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$)
$$\mathbf{P} = -e \frac{\phi}{2\pi} \quad \text{where} \quad \phi = i \oint_{C} dk \, \langle u_{\mathbf{k}} | \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
What is this?

Simplify: 1 band, 1D

- Reciprocal space is really periodic
- Brillouin zone can be regarded as a loop

Simplify: 1 band, 1D

$$\mathbf{P} = \frac{-e}{2\pi} \int_{BZ} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$)
$$\mathbf{P} = -e \frac{\phi}{2\pi} \quad \text{where} \quad \phi = i \oint_{C} dk \, \langle u_{\mathbf{k}} | \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
This is a Berry phase!

QMS23, August 21-25, 2023

Λ

Relation to Wannier functions

Centers of Wannier functions:

$$\begin{split} w_{0} \rangle &= \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} |\psi_{\mathbf{k}}\rangle \\ &= \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} e^{i\mathbf{k}\cdot\mathbf{r}} |u_{\mathbf{k}}\rangle \end{split}$$

$$\mathbf{r} |w_0\rangle = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \left(-i\nabla_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \right) |u_{\mathbf{k}}\rangle$$

$$= i \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \; e^{i\mathbf{k}\cdot\mathbf{r}} \left(\nabla_{\mathbf{k}} \left| u_{\mathbf{k}} \right\rangle \right)$$

$$egin{aligned} &\langle w_{0} \, | \, \mathbf{r} \, | \, w_{0}
angle = i \, rac{V}{(2\pi)^{3}} \, \int_{\mathrm{BZ}} d\mathbf{k} \, raket{u_{k}} \,
abla_{\mathbf{k}} \, | v_{\mathbf{k}}
angle \end{aligned}$$

Berry phases ↔ Wannier centers

Polarization ↔ Wannier centers

Centers of Wannier functions:

$$\mathbf{P} = \frac{ie}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

as before !!

Polarization ↔ Wannier centers

Centers of Wannier functions:

$$\mathbf{P} = \frac{ie}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

as before !!

Reprise: Quantum anomalous Hall

Reprise: Quantum anomalous Hall

Outline

- Wannier functions for occupied subspace
 - -Electric polarization
 - -Topological obstruction
- Wannier functions as a basis
 - -Wannier interpolation
- Orbital magnetoelectric coupling
 - -Axion electrodynamics

Maximally localized Wannier functions

$$\widetilde{\psi}_{j\mathbf{k}} = \sum_{n} U_{nj}(\mathbf{k}) |\psi_{n\mathbf{k}}\rangle$$
Pseudo-Bloch
(smooth in k)

$$\widetilde{\psi}_{n\mathbf{k}} = \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d^3k \, e^{-i\mathbf{k}\cdot\mathbf{R}} |\widetilde{\psi}_{n\mathbf{k}}\rangle$$
Wannier functions
(LMO's)
Wannier functions $\rightarrow |w_n\rangle = |w_{0,n}\rangle$
Minimize $\Omega = \sum \left[\langle w_n | r^2 | w_n \rangle - |\langle w_n | \mathbf{r} | w_n \rangle |^2 \right]$

n

RUTGERS

Maximally localized Wannier functions

n

Example: 2D QAH insulator

Berry potential ("gauge field") $\mathbf{A}(\mathbf{k}) = \langle u_{n\mathbf{k}} | i \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$

Boundary Berry phase = 2π

Not a periodic gauge Cannot construct WFS A(k) has vortex in interior

Boundary Berry phase = 0 Not a smooth gauge Cannot construct WFs

Topological obstruction

Conclusion

• Exponentially localized Wannier functions do not exist for QAH insulator

Other examples

- For TR-invariant strong topological insulator (e.g., Bi₂Se₃), it is not possible to choose WFs in a way that respects TR symmetry
- For crystalline topological insulators, it is not possible to choose WFs that respect the crystalline symmetries

Outline

- Wannier functions for occupied subspace
 - Electric polarization
 - -Topological obstruction
- Wannier functions as a basis – Wannier interpolation
- Orbital magnetoelectric coupling
 Axion electrodynamics

Wannier disentangling

From WannierTools Documentation

GERS

Wannier disentangling

From WannierTools Documentation

Wannier interpolation

- Setup N x N x N supercell
- Compute

 $\begin{array}{l} \langle w_{0n} | H | w_{Rm} \rangle \\ \langle w_{0n} | x | w_{Rm} \rangle \\ \langle w_{0n} | y | w_{Rm} \rangle \\ \langle w_{0n} | z | w_{Rm} \rangle \end{array}$

- Up to some radius r_{cut} , $r_{cut} < Na/2$
- Solve this "tight binding" model

Wannier interpolation

Outline

- Wannier functions for occupied subspace
 - Electric polarization
 - -Topological obstruction
- Wannier functions as a basis
 - -Wannier interpolation

Dropped for time

- Orbital magnetoelectric coupling
 - -Axion electrodynamics

Theory of magnetoelectric axion angle $\boldsymbol{\theta}$

$$heta = -rac{1}{4\pi}\int d^3k \,\epsilon_{abc} \mathrm{tr} \left[A_a \partial_b A_c - rac{2i}{3}A_a A_b A_c
ight]$$

Berry connection $A_{a,nm} = i \langle u_{n\mathbf{k}} | \partial_a | u_{m\mathbf{k}} \rangle$

Qi, Hughes and Zhang, PRB **78**, 195424 (2008) *Essin, Moore and Vanderbilt, PRL* **120**, 146805 (2009)

Maxwell equations:

$$\nabla \cdot \boldsymbol{\mathcal{E}} = 4\pi \left(\rho_{\rm f} + \rho_{\rm b} \right)$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \boldsymbol{\mathcal{E}} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \left(\mathbf{J}_{\rm f} + \mathbf{J}_{\rm b} + \mathbf{J}_{\rm p} \right) + \frac{1}{c} \frac{\partial \boldsymbol{\mathcal{E}}}{\partial t}$$

 $\mathbf{P} = \mathbf{P}_0 + \alpha \, \mathbf{B} \, ,$ Separate out magnetoelectric part: $\mathbf{M} = \mathbf{M}_0 + \alpha \, \boldsymbol{\mathcal{E}} \, ,$

QMS23, August 21-25, 2023

 $\cdot \mathbf{P}$.

Maxwell equations:

$$\nabla \cdot \boldsymbol{\mathcal{E}} = 4\pi \left(\rho_{\mathrm{f}} + \tilde{\rho}_{\mathrm{b}} - (\nabla \alpha) \cdot \mathbf{B} \right)$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\tilde{\mathbf{J}}_{\mathrm{b}} = \nabla \times \mathbf{M}_{0}$$
$$\tilde{\mathbf{J}}_{\mathrm{b}} = \partial \mathbf{P}_{0} / \partial t$$
$$\tilde{\mathbf{J}}_{\mathrm{p}} = \partial \mathbf{P}_{0} / \partial t$$

Separate out $\mathbf{P} = \mathbf{P}_0 + \alpha \mathbf{B}$, magnetoelectric part: $\mathbf{M} = \mathbf{M}_0 + \alpha \mathbf{\mathcal{E}}$,

Maxwell equations:

$$\nabla \cdot \boldsymbol{\mathcal{E}} = 4\pi \left(\rho_{\mathrm{f}} + \tilde{\rho}_{\mathrm{b}} - (\nabla \alpha) \cdot \mathbf{B} \right)$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \boldsymbol{\mathcal{E}} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \boldsymbol{\mathcal{E}} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\int \mathbf{J}_{\mathrm{b}} = \nabla \times \mathbf{M}_{0}$$

$$\tilde{\mathbf{J}}_{\mathrm{b}} = \partial \mathbf{P}_{0} / \partial t$$

$$\tilde{\mathbf{J}}_{\mathrm{p}} = \partial \mathbf{P}_{0} / \partial t$$

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \left(\mathbf{J}_{\mathrm{f}} + \tilde{\mathbf{J}}_{\mathrm{b}} + \tilde{\mathbf{J}}_{\mathrm{p}} + c \left(\nabla \alpha \right) \times \boldsymbol{\mathcal{E}} + \frac{\partial \alpha}{\partial t} \mathbf{B} \right) + \frac{1}{c} \frac{\partial \boldsymbol{\mathcal{E}}}{\partial t}$$

$$\alpha(\mathbf{r},t) = \frac{e^2}{2\pi hc} \,\theta(\mathbf{r},t)$$

Only spatial and time derivatives of θ enter field equations !

Equations of motion of fields

Equations of motion of electrons

$$\left(1 + \frac{e}{\hbar c} \mathbf{B} \cdot \mathbf{\Omega}\right) \dot{\mathbf{r}} = \mathbf{v}_{g} + \frac{e}{\hbar} \,\mathcal{E} \times \mathbf{\Omega} + \frac{e}{\hbar c} \left(\mathbf{v}_{g} \cdot \mathbf{\Omega}\right) \mathbf{B},$$
$$\left(1 + \frac{e}{\hbar c} \mathbf{B} \cdot \mathbf{\Omega}\right) \dot{\mathbf{k}} = -\frac{e}{\hbar} \mathcal{E} - \frac{e}{\hbar c} \mathbf{v}_{g} \times \mathbf{B} - \frac{e^{2}}{\hbar^{2} c} \left(\mathcal{E} \cdot \mathbf{B}\right) \mathbf{\Omega}.$$

QMS23, August 21-25, 2023

2

t)

Summary

- Wannier functions for occupied subspace
 - Electric polarization
 - -Topological obstruction
- Wannier functions as a basis
 - -Wannier interpolation
- Orbital magnetoelectric coupling
 - -Axion electrodynamics

Slides available at https://is.gd/inFID2

