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Outline

• Wannier functions for occupied subspace
– Electric polarization
– Topological obstruction

• Wannier functions as a basis
– Wannier interpolation

• Orbital magnetoelectric coupling
– Axion electrodynamics
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He2 molecule
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Given a set of occupied states ∣Ψn   ⟩ , n = {1,N }
Find unitary transformation to ∣𝜙j   ⟩ , j = {1,N }

such that the ∣𝜙j   ⟩ are maximally localized.
Foster-Boys criterion: Minimize

Construction of LMOs
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Apply Foster-Boys criterion for crystalline solids?

Problem: ⟨ψnk   ∣x∣ψnk   ⟩ and ⟨ψnk   ∣x2∣ψnk   ⟩ are ill defined!
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Maximally localized Wannier functions
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Maximally localized Wannier functions
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Wannier functions
in home unit cell
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Bloch states

Bloch wavefunction
Enk

k
p/a

0 eV

-10 eV

yk(x)

Ingredient: 
Atomic 

wavefunction
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Form wave-packet = “Wannier function”

Tutorial on Wannier functions
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Crystal in real space:

Brillouin zone in reciprocal space:

Tutorial on Wannier functions

0–p/a p/ak
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Crystal in real space:

Brillouin zone in reciprocal space:

Tutorial on Wannier functions

0–p/a p/ak
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Crystal in real space:

Brillouin zone in reciprocal space:

Unitary 
transformation

R

Tutorial on Wannier functions

0–p/a p/ak
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Four occupied bands

Si

Four occupied bands

Expect four WFs per cell
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Multiband Wannier construction
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Wannier functions
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Minimize spread relative to center

Choose unitary matrices to minimize quadratic 
spread

where

´
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Wannier functions: Si

Si
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GaAs

Wannier functions: GaAs

Ga

As
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WFs in SrTiO3
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Mapping to Wannier centers

Wannier
center

rn
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Mapping to Wannier centers

Wannier center
of band 1

(charge -2e)

Wannier center
of band 2

(charge -2e)

Location of ion
(nucleus)

(charge +4e)

a

a

Electric polarization P 
of the crystal can be 

deduced from 
pictures like this
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Outline

• Wannier functions for occupied subspace
– Electric polarization
– Topological obstruction

• Wannier functions as a basis
– Wannier interpolation

• Orbital magnetoelectric coupling
– Axion electrodynamics
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–  + –  +

–  + –  +

–  + –  +

The Problem: Polarization

Textbook illustration More realistic picture
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P = dcell / Vcell ?
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P = dcell / Vcell ?

dcell ≈ 0

dcell = òcell r r(r) d 3r
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P = dcell / Vcell ?

dcell =

dcell = òcell r r(r) d 3r
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P = dcell / Vcell ?

dcell =

dcell = òcell r r(r) d 3r
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Review: Bloch’s Theorem

Define the cell-periodic Bloch function uk(x):
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P µ Snk áynk|r  |ynkñ ?  Ill-defined…

Theory of electric polarization

Recall that in quantum mechanics

    p ® -i hÑr
so it is plausible that

    r ® iÑk
P µ Snk áynk|iÑk |ynkñ ?  

P µ Snk áunk|iÑk |unkñ ?   Yes!  
But also ill-defined
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Theory of electric polarization
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Simplify: 1 band, 1D

What is this?
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Simplify: 1 band, 1D

• Reciprocal space is really periodic
• Brillouin zone can be regarded as a loop

0–p/a p/ak

E

k

E
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Simplify: 1 band, 1D

This is a Berry phase! C

k
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Centers of Wannier functions:

Relation to Wannier functions
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Centers of Wannier functions:

Berry phases  « Wannier centers

a

Lattice
of

Wannier
centers
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Centers of Wannier functions:

P

as before !!

Polarization « Wannier centers
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Centers of Wannier functions:

P

as before !!

Polarization « Wannier centers
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Reprise: Quantum anomalous Hall

kx

ky

kx

C = 1

ϕ

@a = @/@ka ⌦ab = ✏abc⌦c

@a = @/@ka ⌦ab = ✏abc⌦c

�y(kx) =

Z 2⇡/b

0
dky Ay(kx, ky)

2
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kx

C = 1

Reprise: Quantum anomalous Hall

E field

Current Ky

Wannier
center

position
along y

lattice
vector
along y
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Outline

• Wannier functions for occupied subspace
– Electric polarization
– Topological obstruction

• Wannier functions as a basis
– Wannier interpolation

• Orbital magnetoelectric coupling
– Axion electrodynamics
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Maximally localized Wannier functions
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Maximally localized Wannier functions
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Example: 2D QAH insulator

Berry potential (“gauge field”)  A(k) = ⟨un k|i∇k|un k⟩

OR

A(k) smooth and continuous A(k) has vortex in interior

Boundary Berry phase = 2π
Not a periodic gauge
Cannot construct WFS

Boundary Berry phase = 0
Not a smooth gauge

Cannot construct WFs
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Topological obstruction

Conclusion
• Exponentially localized Wannier functions do not exist 

for QAH insulator
Other examples
• For TR-invariant strong topological insulator (e.g., 

Bi2Se3), it is not possible to choose WFs in a way that 
respects TR symmetry

• For crystalline topological insulators, it is not possible 
to choose WFs that respect the crystalline 
symmetries
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Outline

• Wannier functions for occupied subspace
– Electric polarization
– Topological obstruction

• Wannier functions as a basis
– Wannier interpolation

• Orbital magnetoelectric coupling
– Axion electrodynamics
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Wannier disentangling

From WannierTools Documentation

Trivial 
gap

Topological 
gap

Outer window

Inner window
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Wannier disentangling

From WannierTools Documentation

Manifold 
described by 

30 WFs
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Wannier interpolation

• Setup N x N x N supercell
• Compute
 áw0n|H|wRmñ
 áw0n|x|wRmñ
 áw0n|y|wRmñ
 áw0n|z|wRmñ
• Up to some radius rcut ,  rcut < Na/2
• Solve this “tight binding” model
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Wannier interpolation

nanotube, studied in a 100-atom supercell (i.e., 5 times the
primitive unit cell) and with !-point sampling (Lee, Nardelli,
and Marzari, 2005). The system is metallic, and the disen-
tanglement procedure is used to generate well-localized WFs,
resulting in either bond-centered combinations of sp2 atomic
orbitals or atom-centered pz orbitals. The energy bands at any
other k points are calculated by diagonalizing Eq. (98),
noting that the size of the supercell has been chosen so that
the Hamiltonian matrix elements on the right-hand side of
this equation are non-negligible only for WFs up to neighbor-
ing supercells Rð"Þ on either side of R ¼ 0. Figure 28 shows
as solid lines the interpolated bands, unfolded onto the
20-atom primitive cell. Even if with this sampling the system
has a pseudogap of 2 eV, the metallic character of the bands is
perfectly reproduced, and these are in excellent agreement

with the bands calculated directly on the primitive cell by
direct diagonalization of the Kohn-Sham Hamiltonian in the
full plane-wave basis set (open circles). The vertical dashed
lines indicate the equivalent first-principles mesh obtained by
unfolding the ! point.17

3. GW quasiparticle bands

In the two examples above the WFs were generated from
Kohn-Sham Bloch functions, and the eigenvalues used in
Eq. (101) were the corresponding Kohn-Sham eigenvalues.
Many of the deficiencies of the Kohn-Sham energy bands,
such as the underestimation of the energy gaps of insulators
and semiconductors, can be corrected using many-body per-
turbation theory in the form of the GW approximation [for a
review, see Aryasetiawan and Gunnarsson (1998)].

One practical difficulty in generating GW band-structure
plots is that the evaluation of the QP corrections to the
eigenenergies along different symmetry lines in the BZ is
computationally very demanding. At variance with the DFT
formalism, where the eigenenergies at an arbitrary k can be
found starting from the self-consistent charge density, the
evaluation of the QP corrections at a given k requires a
knowledge of the Kohn-Sham eigenenergies and wave func-
tions on a homogeneous grid of points containing the wave
vector of interest. What is often done instead is to perform the
GW calculation at selected k points only, and then deduce a
‘‘scissors correction,’’ i.e., a constant shift to be applied to the
conduction-band Kohn-Sham eigenvalues elsewhere in the
Brillouin zone.

As mentioned in Sec. II.J, Hamann and Vanderbilt (2009)
proposed using Wannier interpolation to determine the GW
QP bands very efficiently and accurately at arbitrary points in
the BZ. The Wannierization and interpolation procedures are
identical to the DFT case. The only difference is that the
starting eigenenergies and overlap matrices over the uniform
first-principles mesh are now calculated at the GW level. (In
the simplest G0W0 approximation, where only the eigenener-
gies, not the eigenfunctions, are corrected, the Wannierization
is done at the DFT level, and the resulting transformation
matrices are then applied to the corrected QP eigenenergies.)

Figure 29 shows a comparison between the interpolated
GW (dashed lines) and DFT-LDA (solid lines) bands of
SrTiO3 (Hamann and Vanderbilt, 2009). Note that the dashed
lines pass through the open circles at the symmetry points,
which denote exact (noninterpolated) GW results.

Among the recent applications of the GW þWannier
method, we mention the study of the energy bands of zircon
and hafnon (Shaltaf et al., 2009), and a detailed comparative
study between the DFT-LDA, scissors-shifted, and QP G0W0

bands of Si and Ge nanowires (Peelaers et al., 2011). In the
latter study they found that the simple scissors correction to
the DFT-LDA bands is accurate near the ! point only, and
only for bands close to the highest valence and lowest

FIG. 27 (color online). Detail of the Wannier-interpolated relativ-
istic band structure of ferromagnetic bcc Fe along !-H. The bands
are color coded according to the expectation value of Sz: lighter for
spin up and darker for spin down. The energies in eV are referred to
the Fermi level. The vertical dashed lines indicate k points on the
mesh used in the first-principles calculation for constructing the
WFs. For comparison, points from a full ab initio calculation are
shown as open circles. From Yates et al., 2007.
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FIG. 28. Electronic properties of a (5,5) carbon nanotube calcu-
lated using WFs. Left panel: Band structure by Wannier interpola-
tion (solid lines), or from a full diagonalization in a plane-wave
basis set (circles). The vertical dashed lines indicate the five
k points corresponding to the ! point in a 100-atom supercell.
The middle and right panels show the Wannier-based calculation of
the quantum conductance and the density of states, with a perfect
match of steps and peaks with respect to the exact band structure.
From Lee, Nardelli, and Marzari, 2005.

17When ! sampling is used, special care should be used in
calculating matrix elements between WFs, since the center of a
periodic image of, e.g., the ket could be closer to the bra that the
actual state considered. Similar considerations apply for transport
calculations and might require calculation of the matrix elements in
real space (Lee, 2006).
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forward we adopt a condensed notation in which band indices
are no longer written explicitly, so that, for example,HH

k;nm ¼
hc H

knjHjc H
kmi is now written as HH

k ¼ hc H
k jHjc H

ki, and
matrix multiplications are implicit. Then Eq. (99) implies
that the transformation law for the Bloch states is

jc H
ki ¼ jcW

k iUk: (100)

If we insert into Eqs. (98) and (99) a wave vector belonging
to the first-principles grid, we simply recover the first-
principles eigenvalues !nk, while for arbitrary k the resulting
!!nk interpolate smoothly between the values on the grid.
(This is strictly true only for an isolated group of bands.
When using disentanglement, the interpolated bands can
deviate from the first-principles ones outside the frozen
energy window, as discussed in Sec. II.I in connection with
Fig. 5.)

Once the matrices h0jHjRi have been tabulated, the band
structure can be calculated very inexpensively by Fourier
transforming [Eq. (98)] and diagonalizing [Eq. (99)] matrices
of rank J. Note that J, the number of WFs per cell, is typically
much smaller than the number of basis functions (e.g., plane
waves) used in the first-principles calculation.

In practice the required matrix elements are obtained by
inverting Eq. (98) over the first-principles grid,

h0jHjRi ¼ 1

N

X

q

e"iq#RhcW
q jHjcW

q i

¼ 1

N

X

q

e"iq#RVy
qEqVq: (101)

Here N is the number of grid points, Eq is the diagonal matrix
of first-principles eigenenergies, and Vq is the matrix defined

in Eq. (50), which converts the J q ab initio eigenstates into
the J $ J q Wannier-gauge Bloch states,

jcW
q i ¼ jc qiVq: (102)

The strategy outlined above (Souza, Marzari, and
Vanderbilt, 2001) is essentially the Slater-Koster interpola-
tion method. However, while the Hamiltonian matrix ele-
ments in the localized basis are treated as adjustable
parameters in empirical TB, they are calculated from first
principles here. A similar interpolation strategy is widely
used to obtain phonon dispersions starting from the inter-
atomic force constants calculated with density-functional
perturbation theory (Baroni et al., 2001). We return to this
analogy between phonons and tight-binding electrons
(Martin, 2004) when describing the interpolation of the
electron-phonon matrix elements in Sec. VI.D.

Wannier band-structure interpolation is extremely accu-
rate. By virtue of the exponential localization of the WFs
within the periodic supercell (see footnote 2), the magnitude
of the matrix elements h0jHjRi decreases rapidly with jRj,
and this exponential localization is preserved even in the case
of metals, provided a smooth subspace has been disentangled.
As the number of lattice vectors included in the summation in
Eq. (98) equals the number of first-principles mesh points,
beyond a certain mesh density the error incurred decreases
exponentially (Yates et al., 2007). In the following we
illustrate the method with a few representative examples
selected from the literature.

1. Spin-orbit-coupled bands of bcc Fe

As a first application, we consider the relativistic band
structure of bcc Fe. Because of the spin-orbit interaction, the
spin density is not perfectly collinear, and the Bloch eigen-
states are spinors. As mentioned in Sec. V.C.1, spinor WFs
can be constructed via a trivial extension of the procedure
described in Sec. II for the nonmagnetic (spinless) case. It is
also possible to further modify the Wannierization procedure
so as to produce two separate subsets of spinor WFs: one with
a predominantly spin-up character, and the other with a
predominantly spin-down character (Wang et al., 2006).

Using this modified procedure, a set of nine disentangled
WFs per spin channel was obtained for bcc Fe by Wang et al.
(2006), consisting of three t2g d-like atom-centered WFs and

six sp3d2-like hybrids pointing along the cubic directions.
A frozen energy window was chosen as indicated in Fig. 26,
so that these 18WFs describe exactly all the occupied valence
states, as well as the empty states up to approximately 18 eV
above the Fermi level.

The interpolated bands obtained using an 8% 8% 8 q grid
in the full BZ are shown as dashed lines in Fig. 26. The
comparison with the first-principles bands (solid lines) re-
veals essentially perfect agreement within the frozen energy
window. This is even more evident in Fig. 27, where we zoom
in on the interpolated band structure near the Fermi level
along "-H, and color code it according to the spin projection
along the quantization axis. The vertical dotted lines indicate
points on the q mesh. For comparison, we show as open
circles the eigenvalues calculated directly from first prin-
ciples around a weak spin-orbit-induced avoided crossing
between two bands of opposite spin. It is apparent that the
interpolation procedure succeeds in resolving details of the
true band structure on a scale much smaller than the spacing
between q points.

2. Band structure of a metallic carbon nanotube

As a second example, we consider Wannier interpolation in
large systems (such as nanostructures) that are often sampled
only at the zone center. We consider here a (5,5) carbon
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FIG. 26. Band structure of ferromagnetic bcc Fe with spin-orbit
coupling included. Solid lines: Original band structure from a
conventional first-principles calculation. Dotted lines: Wannier-
interpolated band structure. The zero of energy is the Fermi level.
From Wang et al., 2006.
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Axion electrodynamics

6.4 Axion Electrodynamics 307

It is standard practice to define bound charges, bound currents, and polarization
currents as

ρb = −∇ · P , (6.58a)

Jb = ∇ × M , (6.58b)

Jp = ∂P
∂t

(6.58c)

with the free charge and current as the remainders,

ρ f = ρ − ρb , (6.59a)

Jf = J − Jb − Jp . (6.59b)

Here, we take the polarization and magnetization to be

P = P0 + α B , (6.60a)

M = M0 + α E , (6.60b)

where P0 is the polarization in the absence of the magnetic field and M0 is the
magnetization in the absence of the electric field. We also define ρ̃b = −∇ · P0,
J̃b = ∇ × M0, and J̃p = ∂P0/∂t as the parts of the objects in Eq. (6.58) that would
remain in the absence of the axion coupling. Straightforward algebra then leads to

ρb = ρ̃b − (∇α) · B , (6.61a)

Jb = J̃b + c (∇α) × E + cα ∇ × E , (6.61b)

Jp = J̃p + ∂α

∂t
B + α

∂B
∂t

, (6.61c)

where Eq. (6.57b) was used in arriving at Eq. (6.61a). When adding Jb +Jp, the last
terms above cancel by virtue of Eq. (6.57c). Thus, we arrive at modified versions
of Eq. (6.57a) and Eq. (6.57d):

∇ · E = 4π
(
ρ f + ρ̃b − (∇α) · B

)
, (6.62a)

∇ × B = 4π

c

(
Jf + J̃b + J̃p + c (∇α) × E + ∂α

∂t
B

)
+ 1

c
∂E
∂t

. (6.62b)

Together with Eqs. (6.57b) and (6.57c), which remain unchanged, these relations
express Maxwell’s equations in the presence of an axion coupling.

The only change in these equations from the standard case is the presence of
the ∇α terms in the first and last of Maxwell’s equations, and of the ∂α/∂t term in
the last Maxwell equation. In other words, the equations of motion depend only on
spatial or temporal derivatives of α(r, t), and not on α itself.
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306 Orbital Magnetization and Axion Coupling

axion electrodynamics as described by the Lagrangian of Eq. (6.31), which can be
regarded either as the fundamental Lagrangian of the vacuum or as an effective
Lagrangian of a material system (Wilczek, 1987). We focus now on the latter
case. Some discussion of axion electrodynamics in this context can be found in
Qi et al. (2008), Essin et al. (2009), Nomura and Nagaosa (2011), Chen and Lee
(2011), and Wu et al. (2016), as well as in Section V.A of the review by Hasan and
Kane (2010).

In general the ME coupling is not isotropic, such that the following analysis
would have to be supplemented by additional terms to represent the anisotropic
responses. This is beyond our present scope, so we restrict ourselves to high-
symmetry crystals in which such anisotropies are absent or we neglect their effects
if present. Henceforth we suppress the ‘iso’ subscript on αiso for the sake of
conciseness, writing it simply as α.

We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
in space or time. As a reminder, α and θ are related by

α(r, t) = e2

2πhc
θ(r, t) = a

4π2
θ(r, t) (6.56)

where a is the fine structure constant. The spatial dependence of α will be of most
use to us, such as when we are modeling a surface or interface as a discontinuity in
α, but it is also interesting to see what a time dependence would do.10

6.4.1 Derivation from Maxwell’s Equations

We now derive the axion electrodynamics just by applying the standard Maxwell’s
equations to the case of an isotropic α(r, t). In Gaussian units, these read

∇ · E = 4πρ , (6.57a)

∇ · B = 0 , (6.57b)

∇ × E = −1
c

∂B
∂t

, (6.57c)

∇ × B = 4π

c
J + 1

c
∂E
∂t

. (6.57d)

10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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Maxwell equations:

6.4 Axion Electrodynamics 307
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Here, we take the polarization and magnetization to be
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M = M0 + α E , (6.60b)

where P0 is the polarization in the absence of the magnetic field and M0 is the
magnetization in the absence of the electric field. We also define ρ̃b = −∇ · P0,
J̃b = ∇ × M0, and J̃p = ∂P0/∂t as the parts of the objects in Eq. (6.58) that would
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where Eq. (6.57b) was used in arriving at Eq. (6.61a). When adding Jb +Jp, the last
terms above cancel by virtue of Eq. (6.57c). Thus, we arrive at modified versions
of Eq. (6.57a) and Eq. (6.57d):

∇ · E = 4π
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ρ f + ρ̃b − (∇α) · B
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, (6.62a)
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Together with Eqs. (6.57b) and (6.57c), which remain unchanged, these relations
express Maxwell’s equations in the presence of an axion coupling.

The only change in these equations from the standard case is the presence of
the ∇α terms in the first and last of Maxwell’s equations, and of the ∂α/∂t term in
the last Maxwell equation. In other words, the equations of motion depend only on
spatial or temporal derivatives of α(r, t), and not on α itself.
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express Maxwell’s equations in the presence of an axion coupling.

The only change in these equations from the standard case is the presence of
the ∇α terms in the first and last of Maxwell’s equations, and of the ∂α/∂t term in
the last Maxwell equation. In other words, the equations of motion depend only on
spatial or temporal derivatives of α(r, t), and not on α itself.
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axion electrodynamics as described by the Lagrangian of Eq. (6.31), which can be
regarded either as the fundamental Lagrangian of the vacuum or as an effective
Lagrangian of a material system (Wilczek, 1987). We focus now on the latter
case. Some discussion of axion electrodynamics in this context can be found in
Qi et al. (2008), Essin et al. (2009), Nomura and Nagaosa (2011), Chen and Lee
(2011), and Wu et al. (2016), as well as in Section V.A of the review by Hasan and
Kane (2010).

In general the ME coupling is not isotropic, such that the following analysis
would have to be supplemented by additional terms to represent the anisotropic
responses. This is beyond our present scope, so we restrict ourselves to high-
symmetry crystals in which such anisotropies are absent or we neglect their effects
if present. Henceforth we suppress the ‘iso’ subscript on αiso for the sake of
conciseness, writing it simply as α.

We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
in space or time. As a reminder, α and θ are related by

α(r, t) = e2

2πhc
θ(r, t) = a

4π2
θ(r, t) (6.56)

where a is the fine structure constant. The spatial dependence of α will be of most
use to us, such as when we are modeling a surface or interface as a discontinuity in
α, but it is also interesting to see what a time dependence would do.10

6.4.1 Derivation from Maxwell’s Equations

We now derive the axion electrodynamics just by applying the standard Maxwell’s
equations to the case of an isotropic α(r, t). In Gaussian units, these read

∇ · E = 4πρ , (6.57a)

∇ · B = 0 , (6.57b)

∇ × E = −1
c

∂B
∂t

, (6.57c)

∇ × B = 4π

c
J + 1

c
∂E
∂t

. (6.57d)

10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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currents as

ρb = −∇ · P , (6.58a)

Jb = ∇ × M , (6.58b)

Jp = ∂P
∂t

(6.58c)

with the free charge and current as the remainders,

ρ f = ρ − ρb , (6.59a)

Jf = J − Jb − Jp . (6.59b)

Here, we take the polarization and magnetization to be

P = P0 + α B , (6.60a)

M = M0 + α E , (6.60b)

where P0 is the polarization in the absence of the magnetic field and M0 is the
magnetization in the absence of the electric field. We also define ρ̃b = −∇ · P0,
J̃b = ∇ × M0, and J̃p = ∂P0/∂t as the parts of the objects in Eq. (6.58) that would
remain in the absence of the axion coupling. Straightforward algebra then leads to

ρb = ρ̃b − (∇α) · B , (6.61a)

Jb = J̃b + c (∇α) × E + cα ∇ × E , (6.61b)

Jp = J̃p + ∂α

∂t
B + α

∂B
∂t

, (6.61c)

where Eq. (6.57b) was used in arriving at Eq. (6.61a). When adding Jb +Jp, the last
terms above cancel by virtue of Eq. (6.57c). Thus, we arrive at modified versions
of Eq. (6.57a) and Eq. (6.57d):

∇ · E = 4π
(
ρ f + ρ̃b − (∇α) · B

)
, (6.62a)

∇ × B = 4π

c

(
Jf + J̃b + J̃p + c (∇α) × E + ∂α

∂t
B

)
+ 1

c
∂E
∂t

. (6.62b)

Together with Eqs. (6.57b) and (6.57c), which remain unchanged, these relations
express Maxwell’s equations in the presence of an axion coupling.

The only change in these equations from the standard case is the presence of
the ∇α terms in the first and last of Maxwell’s equations, and of the ∂α/∂t term in
the last Maxwell equation. In other words, the equations of motion depend only on
spatial or temporal derivatives of α(r, t), and not on α itself.
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axion electrodynamics as described by the Lagrangian of Eq. (6.31), which can be
regarded either as the fundamental Lagrangian of the vacuum or as an effective
Lagrangian of a material system (Wilczek, 1987). We focus now on the latter
case. Some discussion of axion electrodynamics in this context can be found in
Qi et al. (2008), Essin et al. (2009), Nomura and Nagaosa (2011), Chen and Lee
(2011), and Wu et al. (2016), as well as in Section V.A of the review by Hasan and
Kane (2010).

In general the ME coupling is not isotropic, such that the following analysis
would have to be supplemented by additional terms to represent the anisotropic
responses. This is beyond our present scope, so we restrict ourselves to high-
symmetry crystals in which such anisotropies are absent or we neglect their effects
if present. Henceforth we suppress the ‘iso’ subscript on αiso for the sake of
conciseness, writing it simply as α.

We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
in space or time. As a reminder, α and θ are related by
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2πhc
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been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
in space or time. As a reminder, α and θ are related by

α(r, t) = e2

2πhc
θ(r, t) = a

4π2
θ(r, t) (6.56)

where a is the fine structure constant. The spatial dependence of α will be of most
use to us, such as when we are modeling a surface or interface as a discontinuity in
α, but it is also interesting to see what a time dependence would do.10

6.4.1 Derivation from Maxwell’s Equations

We now derive the axion electrodynamics just by applying the standard Maxwell’s
equations to the case of an isotropic α(r, t). In Gaussian units, these read

∇ · E = 4πρ , (6.57a)

∇ · B = 0 , (6.57b)

∇ × E = −1
c

∂B
∂t

, (6.57c)

∇ × B = 4π

c
J + 1

c
∂E
∂t

. (6.57d)

10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.

Maxwell equations:
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It is standard practice to define bound charges, bound currents, and polarization
currents as

ρb = −∇ · P , (6.58a)

Jb = ∇ × M , (6.58b)

Jp = ∂P
∂t

(6.58c)

with the free charge and current as the remainders,

ρ f = ρ − ρb , (6.59a)

Jf = J − Jb − Jp . (6.59b)

Here, we take the polarization and magnetization to be

P = P0 + α B , (6.60a)

M = M0 + α E , (6.60b)

where P0 is the polarization in the absence of the magnetic field and M0 is the
magnetization in the absence of the electric field. We also define ρ̃b = −∇ · P0,
J̃b = ∇ × M0, and J̃p = ∂P0/∂t as the parts of the objects in Eq. (6.58) that would
remain in the absence of the axion coupling. Straightforward algebra then leads to

ρb = ρ̃b − (∇α) · B , (6.61a)

Jb = J̃b + c (∇α) × E + cα ∇ × E , (6.61b)

Jp = J̃p + ∂α

∂t
B + α

∂B
∂t

, (6.61c)

where Eq. (6.57b) was used in arriving at Eq. (6.61a). When adding Jb +Jp, the last
terms above cancel by virtue of Eq. (6.57c). Thus, we arrive at modified versions
of Eq. (6.57a) and Eq. (6.57d):

∇ · E = 4π
(
ρ f + ρ̃b − (∇α) · B

)
, (6.62a)

∇ × B = 4π

c

(
Jf + J̃b + J̃p + c (∇α) × E + ∂α

∂t
B

)
+ 1

c
∂E
∂t

. (6.62b)

Together with Eqs. (6.57b) and (6.57c), which remain unchanged, these relations
express Maxwell’s equations in the presence of an axion coupling.

The only change in these equations from the standard case is the presence of
the ∇α terms in the first and last of Maxwell’s equations, and of the ∂α/∂t term in
the last Maxwell equation. In other words, the equations of motion depend only on
spatial or temporal derivatives of α(r, t), and not on α itself.
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Only spatial and time derivatives 
of θ enter field equations !
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axion electrodynamics as described by the Lagrangian of Eq. (6.31), which can be
regarded either as the fundamental Lagrangian of the vacuum or as an effective
Lagrangian of a material system (Wilczek, 1987). We focus now on the latter
case. Some discussion of axion electrodynamics in this context can be found in
Qi et al. (2008), Essin et al. (2009), Nomura and Nagaosa (2011), Chen and Lee
(2011), and Wu et al. (2016), as well as in Section V.A of the review by Hasan and
Kane (2010).

In general the ME coupling is not isotropic, such that the following analysis
would have to be supplemented by additional terms to represent the anisotropic
responses. This is beyond our present scope, so we restrict ourselves to high-
symmetry crystals in which such anisotropies are absent or we neglect their effects
if present. Henceforth we suppress the ‘iso’ subscript on αiso for the sake of
conciseness, writing it simply as α.

We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
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where a is the fine structure constant. The spatial dependence of α will be of most
use to us, such as when we are modeling a surface or interface as a discontinuity in
α, but it is also interesting to see what a time dependence would do.10

6.4.1 Derivation from Maxwell’s Equations

We now derive the axion electrodynamics just by applying the standard Maxwell’s
equations to the case of an isotropic α(r, t). In Gaussian units, these read
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10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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Axion electrodynamics
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axion electrodynamics as described by the Lagrangian of Eq. (6.31), which can be
regarded either as the fundamental Lagrangian of the vacuum or as an effective
Lagrangian of a material system (Wilczek, 1987). We focus now on the latter
case. Some discussion of axion electrodynamics in this context can be found in
Qi et al. (2008), Essin et al. (2009), Nomura and Nagaosa (2011), Chen and Lee
(2011), and Wu et al. (2016), as well as in Section V.A of the review by Hasan and
Kane (2010).

In general the ME coupling is not isotropic, such that the following analysis
would have to be supplemented by additional terms to represent the anisotropic
responses. This is beyond our present scope, so we restrict ourselves to high-
symmetry crystals in which such anisotropies are absent or we neglect their effects
if present. Henceforth we suppress the ‘iso’ subscript on αiso for the sake of
conciseness, writing it simply as α.

We do, however, include all relevant physical contributions to α, including those
from θKubo and θCS and, if we are interested in responses at sub-phonon (e.g.,
terahertz) frequencies, those from the lattice-mediated mechanism discussed on
p. 286. We also allow for the fact that α, or equivalently θ , may be slowly varying
in space or time. As a reminder, α and θ are related by

α(r, t) = e2

2πhc
θ(r, t) = a

4π2
θ(r, t) (6.56)

where a is the fine structure constant. The spatial dependence of α will be of most
use to us, such as when we are modeling a surface or interface as a discontinuity in
α, but it is also interesting to see what a time dependence would do.10

6.4.1 Derivation from Maxwell’s Equations

We now derive the axion electrodynamics just by applying the standard Maxwell’s
equations to the case of an isotropic α(r, t). In Gaussian units, these read

∇ · E = 4πρ , (6.57a)

∇ · B = 0 , (6.57b)

∇ × E = −1
c

∂B
∂t

, (6.57c)

∇ × B = 4π

c
J + 1

c
∂E
∂t

. (6.57d)

10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.

Equations of motion of fields

Equations of motion of electrons

264 Topological Insulators and Semimetals

Of course, particle number really is conserved. This becomes self-evident
when we remember the Nielsen–Ninomiya theorem, which ensures that the sum
of chiralities vanishes. Thus, the total dn/dt is zero due to cancellation of the
contributions from Weyl points of positive and negative chirality. In fact, the chiral
anomaly can be regarded as providing an alternative proof of the Nielson–Ninomiya
theorem via a charge-conservation argument.

The chiral anomaly is often derived via a consideration of the properties of the
Landau-level spectrum in the presence of a finite magnetic field; this argument is
sketched, for example, in Section II.C.2 of the review by Armitage et al. (2018).
As an alternative, we will sketch a semiclassical argument along the lines of one
given by Son and Spivak (2013). We simply apply the semiclassical equations of
motion given in Eq. (5.11), crucially including the anomalous velocity term in
Eq. (5.11a), to the case of spatially uniform E and B fields. After several
manipulations designed to move all terms involving ṙ and k̇ to the left, we obtain
(see Ex. 5.19)

(
1 + e

h̄c
B · !

)
ṙ = vg + e

h̄
E × ! + e

h̄c
(vg · !) B , (5.39a)

(
1 + e

h̄c
B · !

)
k̇ = − e

h̄
E − e

h̄c
vg × B − e2

h̄2c
(E · B)! . (5.39b)

The factor (1 + eB · !/h̄c) appearing on the left-hand sides is a density-of-
states enhancement factor that arises when Berry curvature and magnetic fields
are both present. As explained by Xiao et al. (2005), it can be derived based on a
reconsideration of Liouville’s theorem on the conservation of phase-space volume
in light of Eq. (5.11). The physics is basically the same as that of the Středa formula
discussed on p. 33. There we worked in 2D; in that context, we can combine
Eq. (1.34) with Eq. (5.8) for a single band to get

!n = 1
(2π)2

∫ (
e
h̄c

B⊥#xy

)
f (k) d2k (5.40)

where f (k) is an occupation factor. The zero-field density n0 is given by
Eq. (5.40) but without the factor in parentheses, so !n/n0 = eB⊥#xy/h̄c, giving
an enhancement ratio of 1 + eB · !/h̄c when generalized to 3D.

To derive the chiral anomaly, we track the flow of occupied wave packets in
k-space as expressed by Eq. (5.39b). The k-space flux density F , defined as dk/dt
times the density of states per “phase space” volume d3r d3k, is just (2π)−3 times
the left-hand side of Eq. (5.39b). If there is an electron pocket surrounding the Weyl
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10 We could equally well write all the following equations in terms of θ , but the formulation in terms of α has
been chosen to keep the discussion closer to the spirit of the classical Maxwell’s equations.
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Summary

• Wannier functions for occupied subspace
– Electric polarization
– Topological obstruction

• Wannier functions as a basis
– Wannier interpolation

• Orbital magnetoelectric coupling
– Axion electrodynamics
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