Berry phases, Berry curvatures, and Hall conductivity

LOOK INSIDE

Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and Topological Insulators DAVID VANDERBIT Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and

AUTHOR: David Vanderbilt, Rutgers University, New Jersey DATE PUBLISHED: December 2018 AVAILABILITY: In stock FORMAT: Hardback ISBN: 9781107157651

Rate & review

Topological Insulators

David Vanderbilt Rutgers University

Slides available at https://is.gd/inFID2

Outline

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons
- Summary

Berry phases

 $\phi = -\mathrm{Im}\,\ln\left[\left\langle u_1|u_2\right\rangle\left\langle u_2|u_3\right\rangle...\left\langle u_{n-1}|u_n\right\rangle\right]$

Check: $|\widetilde{u}_2\rangle = e^{i\beta} |u_2\rangle$ has no effect.

Berry phases

$$\phi = -\mathrm{Im} \oint d\lambda \, \langle u_{\lambda} | \frac{du_{\lambda}}{d\lambda} \rangle$$

$$\langle u_{\lambda} | \frac{d}{d\lambda} | u_{\lambda} \rangle$$

ERS

Gauge freedom

$$\ket{\tilde{u}_{\lambda}} = e^{i\beta(\lambda)} \ket{u_{\lambda}}$$

Continuity requires

$$e^{i\beta(1)} = e^{i\beta(0)}$$

Effect on Berry phase

$$\begin{split} \tilde{\phi} &= \phi + \int_0^1 d\lambda \, \frac{d\beta}{d\lambda} \\ &= \phi + [\beta(1) - \beta(0)] \\ &= \phi + 2\pi \, \times \, \text{integer} \end{split}$$

Berry phases

Berry curvature

Chern theorem

Chern theorem

Stokes applied to A:

$$\phi = \int_A \Omega(\lambda) \, dS_\lambda \; \bmod 2\pi$$

Stokes applied to B:

$$\phi = -\int_B \Omega(\lambda)\, dS_\lambda \ \ \mathrm{mod}\ 2\pi$$

Subtract:

$$0 = \oint \Omega(\lambda) \, dS_{\lambda} \mod 2\pi$$

Chern theorem:

$$\oint \Omega(\lambda) \, dS_{\lambda} = 2\pi \, C$$

Example: Spinor on Bloch sphere

Famous example: Spinor in magnetic field

2D crystalline insulators

 $(\lambda_{X}, \lambda_{V}) \Rightarrow (k_{X}, k_{V})$

General Parametric Hamiltonian

2D insulator on k-space torus

Cell-periodic Bloch functions

Define the cell-periodic Bloch function $u_k(x)$:

$$u_k(x) = e^{-ikx}\psi_k(x)$$

These obey the same periodic boundary conditions, independent of *k*. Thus du_k/dk is well defined, while $d\psi_k/dk$ is not.

Berryology of the 3D Brillouin zone

Component notation

Berry connection
$$A_a(\mathbf{k}) = \langle u_{\mathbf{k}} | i \partial_a | u_{\mathbf{k}} \rangle$$
 $\partial_a = \partial / \partial k_a$
Berry curvature $\Omega_a(\mathbf{k}) = \epsilon_{abc} \partial_b A_c(\mathbf{k})$ $\Omega_{ab} = \epsilon_{abc} \Omega_c$
Berry curvature $\Omega_{ab}(\mathbf{k}) = -2 \operatorname{Im} \langle \partial_a u_{\mathbf{k}} | \partial_b u_{\mathbf{k}} \rangle$
Vector notation
 $\mathbf{A}(\mathbf{k}) = \langle u_{\mathbf{k}} | i \nabla_{\mathbf{k}} | u_{\mathbf{k}} \rangle$
 $\Omega(\mathbf{k}) = \nabla_{\mathbf{k}} \times \mathbf{A}(\mathbf{k})$ Compare $\mathbf{B}(\mathbf{r}) = \nabla_{\mathbf{r}} \times \mathbf{A}^{\mathrm{EM}}(\mathbf{r})$

 $\mathbf{\Omega}(\mathbf{k}) = -2\mathrm{Im}\left\langle \mathbf{\nabla}_{\mathbf{k}} u_{\mathbf{k}} \right| \times \left| \mathbf{\nabla}_{\mathbf{k}} u_{\mathbf{k}} \right\rangle$

QMS23, August 21-25, 2023

 (\mathbf{r})

Meaning of Berry curvature in a FM metal

Outline

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons
- Summary

Ordinary Hall conductivity

Measure σ_{xy} in presence of *B*-field

Quantum Hall effect

Quantum Hall effect

Hall effects: The big picture

	Induced by B-field	Ferromagnetic sample
Metal	Ordinary Hall (1879)	
Topological insulator	Quantum Hall (1980)	

Anomalous Hall conductivity (AHC)

Measure σ_{xy} in <u>absence</u> of *B*-field

Berry curvature in a FM metal

(Intrinsic part!)

Karplus-Luttinger intrinsic AHC

Patrick Bruno

Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany

TH-2007-20

From Kubo's linear response theory, the conductivity tensor for independent electrons is given by Luttinger (1969)

$$\sigma_{ij} = \frac{ie^{2}\hbar}{\Omega} \lim_{s \to 0^{+}} \\ \times \left\langle \sum_{n,m} \frac{f(\varepsilon_{n}) - f(\varepsilon_{m})}{\varepsilon_{m} - \varepsilon_{n}} \frac{\langle n | v_{j} | m \rangle \langle m | v_{i} | n \rangle}{\varepsilon_{n} - \varepsilon_{m} + is} \right\rangle_{c}^{c} (76) \\ \left\langle u_{mk} | \partial_{k} | u_{nk} \rangle = \hbar \frac{\langle u_{nk} | \mathbf{v} | u_{mk} \rangle}{\epsilon_{nk} - \epsilon_{mk}} \\ \right\rangle \\ \left\langle \Omega_{z}(\mathbf{k}) = -2 \mathrm{Im} \left\langle \frac{du}{dk_{x}} \middle| \frac{du}{dk_{y}} \right\rangle \\ \mathrm{Modern \ view:} \quad \sigma_{ij} = -\frac{e^{2}}{h} \int_{\mathrm{BZ}} \frac{d^{2}k}{(2\pi)^{2}} \sum_{n} f(\epsilon_{nk}) \Omega_{nk,ij}$$

Symmetries of Berry curvature

Symmetries

- Inversion: $\Omega(\mathbf{k}) = \Omega(-\mathbf{k})$
- TR: $\Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$

Consequences

- Nonmag. centrosymm.: $\Omega(\mathbf{k}) = 0$
- Nonmag. acentric: $\int \Omega(\mathbf{k}) d^3 \mathbf{k} = 0$
- FM: ∫ Ω(k) d³k ≠ 0

over Fermi sea (metal) or

BZ (insulator)

Berry curvature in a FM metal

Berry curvature in a FM insulator

Hall effects: The big picture

	Induced by B-field	Ferromagnetic sample
Metal	Ordinary Hall (1879)	Anomalous Hall (1881)
Topological insulator	Quantum Hall (1980)	Quantum Anomalous Hall (2013)

Outline

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons
- Summary

Proof of principle: QAH insulators

VOLUME 61, NUMBER 18

PHYSICAL REVIEW LETTERS

31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance σ^{xy} in the *absence* of an external magnetic field. Massless fermions without spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity anomaly" of (2+1)-dimensional field theories.

Phase diagram of Haldane model

String Berry phases for normal band

$$\phi_{y}(k_{x}) = \int_{0}^{2\pi/b} dk_{y} A_{y}(k_{x}, k_{y})$$

$$\phi$$

$$k_{y}$$

$$k_{\chi}$$

String Berry phases in QAH band

RUTGERS

Physical relation to anomalous Hall

Quantum Hall Edge Channels

• Quantum Hall:

Edge states: 2D QAH insulator

Conservation of charge \Rightarrow chiral surface state

Magnetic doping: Claim for QAH

www.sciencemag.org SCIENCE VOL 340 12 APRIL 2013

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Cui-Zu Chang,^{1,2}* Jinsong Zhang,¹* Xiao Feng,^{1,2}* Jie Shen,²* Zuocheng Zhang,¹ Minghua Guo,¹ Kang Li,² Yunbo Ou,² Pang Wei,² Li-Li Wang,² Zhong-Qing Ji,² Yang Feng,¹ Shuaihua Ji,¹ Xi Chen,¹ Jinfeng Jia,¹ Xi Dai,² Zhong Fang,² Shou-Cheng Zhang,³ Ke He,²† Yayu Wang,¹† Li Lu,² Xu-Cun Ma,² Qi-Kun Xue¹†

Observed below ~1K

Discovery of QAH (2013)

www.sciencemag.org SCIENCE VOL 340 12 APRIL 2013

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Cui-Zu Chang,^{1,2*} Jinsong Zhang,^{1*} Xiao Feng,^{1,2*} Jie Shen,^{2*} Zuocheng Zhang,¹ Minghua Guo, Kang Li,² Yunbo Ou,² Pang Wei,² Li-Li Wang,² Zhong-Qing Ji,² Yang Feng,¹ Shuaihua Ji,¹ Xi Chen,¹ Jinfeng Jia,¹ Xi Dai,² Zhong Fang,² Shou-Cheng Zhang,³ Ke He,²† Yayu Wang,¹† Li Lu,² Xu-Cun Ma,² Qi-Kun Xue¹†

Cr-doped (Bi,Sb)₂Te₃ films

98% of e²/h at 30mK

Higher T with V doping

nature materials March 2015

High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator

Cui-Zu Chang¹*, Weiwei Zhao²*, Duk Y. Kim², Haijun Zhang³, Badih A. Assaf⁴, Don Heiman⁴, Shou-Cheng Zhang³, Chaoxing Liu², Moses H. W. Chan² and Jagadeesh S. Moodera^{1,5*}

97% of e²/h at 200mK 99.98% of e²/h at 25mK

QMS23, August 21-25, 2023

V-doped (Bi,Sb)₂Te₃

films

Hall effects: The big picture

	Induced by B-field	Ferromagnetic sample
Metal	Ordinary Hall (1879)	Anomalous Hall (1881)
Topological insulator	Quantum Hall (1980)	Quantum Anomalous Hall (2013)

Outline

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons
- Summary

Nonlinear Hall effect

- Consider nonmagnetic but acentric conductor ("polar metal")
- $\Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$ so that $\int_{BZ} \Omega(\mathbf{k}) f(\mathbf{k}) d^3 \mathbf{k} = 0$
- Apply *E* and drive current $J \propto \tau E$
 - Fermi surface shifts $\propto \tau E$
 - − Now $\int_{BZ} Ω d^3 k \neq 0$

Wang, Ye, Yu, and Liao, ACS Nano 14, 3755 (2020)

Nonlinear Hall effect

$$j_a^0 = \chi_{abc} \mathcal{E}_b \mathcal{E}_c^* \qquad (\text{also } j_a^{2\omega} = \chi_{abc} \mathcal{E}_b \mathcal{E}_c)$$
$$\chi_{abc} = \varepsilon_{adc} \frac{e^3 \tau}{2(1 + i\omega\tau)} \int_k (\partial_b f_0) \Omega_d$$
$$= -\varepsilon_{adc} \frac{e^3 \tau}{2(1 + i\omega\tau)} \int_k f_0 (\partial_b \Omega_d)$$

$$D_{ab} = \int_k f_0(\partial_a \Omega_b)$$

"Berry curvature dipole moment" (BCDM)

Nonlinear Hall effect

PHYSICAL REVIEW LETTERS 125, 046402 (2020)

Engineering Weyl Phases and Nonlinear Hall Effects in T_d-MoTe₂

Sobhit Singh[®], ^{*} Jinwoong Kim[®], Karin M. Rabe, and David Vanderbilt[®] Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Outline

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons
- Summary

Semiclassical wavepacket dynamics

Dynamics of wave packet:

$$\dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon_n(\mathbf{k})}{\partial \mathbf{k}}$$

$$\hbar \dot{\mathbf{k}} = -e \mathbf{E}(\mathbf{r}) - e \dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r}),$$

This underlies the discussion of Boltzmann transport in most textbooks. But it is missing a term!

Semiclassical wavepacket dynamics

Dynamics of wave packet:

Anomalous velocity term

$$\dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon_n(\mathbf{k})}{\partial \mathbf{k}} \left[-\dot{\mathbf{k}} \times \mathbf{\Omega}_n(\mathbf{k}), \right]$$

$$\hbar \dot{\mathbf{k}} = -e \mathbf{E}(\mathbf{r}) - e \dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r}).$$

Recall that Ω vanishes if inversion and TR are present. Otherwise, must be included for anomalous Hall, etc!

Good review: D. Xiao, M.-C. Chang and Q. Niu, RMP 82, 1959 (2010).

Density of states renormalization

Wavepacket equations of motion:

$$\dot{\mathbf{r}} = \mathbf{v}_{g} - \dot{\mathbf{k}} \times \mathbf{\Omega},$$

 $\dot{\mathbf{k}} = -\frac{e}{\hbar} \mathbf{\mathcal{E}} - \frac{e}{\hbar c} \, \dot{\mathbf{r}} \times \mathbf{B},$

Move all r-dot, k-dot terms to left side:

$$\left(1 + \frac{e}{\hbar c} \mathbf{B} \cdot \mathbf{\Omega}\right) \dot{\mathbf{r}} = \mathbf{v}_{g} + \frac{e}{\hbar} \mathbf{\mathcal{E}} \times \mathbf{\Omega} + \frac{e}{\hbar c} \left(\mathbf{v}_{g} \cdot \mathbf{\Omega}\right) \mathbf{B},$$
$$\left(1 + \frac{e}{\hbar c} \mathbf{B} \cdot \mathbf{\Omega}\right) \dot{\mathbf{k}} = -\frac{e}{\hbar} \mathbf{\mathcal{E}} - \frac{e}{\hbar c} \mathbf{v}_{g} \times \mathbf{B} - \frac{e^{2}}{\hbar^{2} c} \left(\mathbf{\mathcal{E}} \cdot \mathbf{B}\right) \mathbf{\Omega}.$$

DOS in phase space =
$$(2\pi)^{-3} \left(1 + \frac{e}{\hbar c} \mathbf{B} \cdot \mathbf{\Omega}\right)$$

Density of states

RUTGER

Orbital moment

D. Xiao, J. Shi, and Q. Niu, PRL **95**, 137205 (2005).

Dynamics of wave packet:

Magnetic moment of wave packet:

$$\mathbf{m}_{n\mathbf{k}} = \frac{e}{2\hbar c} \operatorname{Im} \left\langle \nabla_{\mathbf{k}} u_{n\mathbf{k}} \right| \times \left(H_{\mathbf{k}} - E_{n\mathbf{k}} \right) \left| \nabla_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$

Properties of electron in state $\psi_{n\mathbf{k}}$

Quantities needed for transport, Fermi liquid theory, ... at each $\psi_{n\mathbf{k}}$:

- Band energy *E*
- Spin moment μ_{spin}
- Orbital moment $\mu_{\rm orb}$
- Berry curvature $\boldsymbol{\varOmega}$

Pseudovectors with same symmetry requirements

And we frequently also need *k* derivatives like

 $\partial_k E_{nk} = \text{hbar } \boldsymbol{\nu}_{\text{F}} \qquad \text{for Fermi velocity} \\ \partial_k \Omega_{nk} \qquad \qquad \text{for BCDM}$

etc.

Summary

- Berry phases and curvatures
- Anomalous Hall (AH) effect
- Quantum anomalous Hall (QAH) effect
- Nonlinear Hall effect
- Semiclassical viewpoint
- Properties of Bloch electrons

Slides available at https://is.gd/inFID2

EXTRA

Physical meaning of Berry phases

$$\phi_{y}(k_{x}) = \int_{0}^{2\pi/b} dk_{y} A_{y}(k_{x}, k_{y})$$

$$Polarization P_{y}$$

$$\phi_{y}(k_{x})$$

$$0.25$$

$$0.20$$

$$0.15$$

$$0.15$$

$$0.10$$

$$0.05$$

$$0.00$$

$$0.02$$

$$0.4$$

$$0.6$$

$$0.8$$

$$1.0$$

$$k_{x}$$

