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Chern theorem

Region B Region A

f

Stokes applied to A:

Stokes applied to B:

Subtract:

Chern theorem:
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Example: Spinor on Bloch sphere

E

“up” along B

“down” along B

Famous example: Spinor in magnetic field

B-field direction
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(lx , ly)   Þ   (kx , ky)
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2D crystalline insulators
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Cell-periodic Bloch functions

Define the cell-periodic Bloch function uk(x):

These obey the same periodic boundary conditions, independent of k.

Thus duk /dk is well defined, while dψk /dk is not.
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Berryology of the 3D Brillouin zone
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Meaning of Berry curvature in a FM metal
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Ordinary Hall conductivity

Measure σxy in presence of B-field
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Quantum Hall effect

B
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Quantum Hall effect
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Hall effects: The big picture

Ordinary
Hall

(1879)
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Anomalous Hall conductivity (AHC)

Ferromagnet

Measure σxy in absence of B-field
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Berry curvature in a FM metal
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Symmetries of Berry curvature

Symmetries
• Inversion: W(k) = W(−k)
• TR:  W(k) = −W(−k)
Consequences
• Nonmag. centrosymm.: W(k) = 0
• Nonmag. acentric: ∫ W(k) d3k = 0
• FM: ∫ W(k) d3k ≠ 0

over Fermi sea (metal)
or

BZ (insulator)
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Berry curvature in a FM metal
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Hall effects: The big picture
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Proof of principle: QAH insulators
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Phase diagram of Haldane model

C=0

C=0

C = −1 C = +1

No change of
Symmetry!
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String Berry phases for normal band
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String Berry phases in QAH band
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kx

C = 1

Physical relation to anomalous Hall
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Quantum Hall Edge Channels

• Quantum Hall:

• Quantum anomalous Hall:

syx = e2/h
exactly !

Chiral edge 
channels

FM insulator
(2D crystal)

No Bext
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Edge states: 2D QAH insulator

C = +1k
E

Conservation of charge  Þ chiral surface state

J

EF
Edge current
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Magnetic doping: Claim for QAH

Observed 
below ~1K
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Discovery of QAH (2013)

98% of e2/h at 30mK

Cr-doped (Bi,Sb)2Te3
films 

σxy
σxx
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Higher T with V doping

97% of e2/h at 200mK
99.98% of e2/h at 25mK

V-doped (Bi,Sb)2Te3
films 

σxy

σxx

March 2015



QMS23, August 21-25, 2023

Hall effects: The big picture

Ordinary
Hall

(1879)

Anomalous
Hall

(1881)

Quantum
Hall

(1980) ?

Induced by 
B-field

Ferromagnetic
sample

Metal

Topological 
insulator

Quantum
Anomalous Hall

(2013)



QMS23, August 21-25, 2023

Outline

• Berry phases and curvatures
• Anomalous Hall (AH) effect
• Quantum anomalous Hall (QAH) effect
• Nonlinear Hall effect
• Semiclassical viewpoint
• Properties of Bloch electrons
• Summary



QMS23, August 21-25, 2023

Nonlinear Hall effect

• Consider nonmagnetic but acentric conductor
(“polar metal”)

• W(k) = −W(−k)  so that  ∫BZ W (k) f (k) d3k = 0
• Apply E and drive current J ∝ τ E

– Fermi surface shifts ∝ τ E
– Now ∫BZ W d3k ≠ 0

observation of giant magnetic quantum oscillations of thermal
conductivity in Weyl semimetal TaAs and proposed the chiral
zero sound as the most likely cause.160 The thermoelectric
evidence of chiral zero sound hitherto remains elusive, calling
for further experimental investigation on topological semi-
metals.
SdH Oscillations with Berry Phase π. SdH oscillation

originates from the Landau quantization of electron orbits
under high magnetic fields. The oscillation can be described by

Lifshitz−Kosevich formula π ϕ+( )cos 2 F
B

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑ, where B is the

magnitude of magnetic field, F is the oscillation frequency, and
ϕ is the phase factor correlated with the Fermi surface
topology.140 It is widely believed that an energy band with
linear dispersion would introduce a π Berry phase,161,162

leading to ϕ = 0 and ±1/8 (+ for hole, − for electron carrier)
in 2D and 3D systems, respectively. In this regime, 3D
topological semimetals are expected to harbor a phase ϕ= ±1/
8 in the SdH oscillations. The quantity ϕ can be
experimentally accessed by analyzing the Landau fan diagram
of SdH oscillations. A crucial issue here is that whether integer
or half-integer Landau indices correspond to the resistivity
peaks in SdH oscillations. A recent theoretical work on Weyl
and Dirac semimetals demonstrates that the resistivity peaks
appear at the Landau band edges and should be assigned
integer indices.140 Moreover, the phase factor ϕ of Dirac
semimetals or Weyl semimetals with TRS is predicted to take
the value of ±1/8 or ±5/8, which is consistent with the phase
shift observed in previous experiments.146,163−165 In contrast,
for Weyl semimetals with broken TRS, the phase factor
undergoes a nonmonotonic evolution with varying Fermi

energy and approaches a wide range between ±7/8 and ±9/8
near the Lifshitz point.140

In addition, the SdH oscillations can also be used to analyze
the geometry of Fermi surface of topological semimetals, like
Cd3As2,

165 through the angle-dependent oscillation frequency.
Most interestingly, the evolution of Berry phase in certain
processes may be obtained by analyzing SdH oscillations,164,166

which can be used as an effective detection method to reveal
the possible topological phase transition.

Large Linear MR. A giant positive linear MR has been
observed in topological semimetals under a high magnetic
field.135,145,163,167 Many possible physical origins about the
linear MR have been proposed. The Abrikosov theory,168

known as the quantum linear MR model, shows that a
nonsaturating linear MR can occur in 3D gapless semi-
conductors with the linear dispersion when all electrons are
filled into the first Landau level (LL), that is, the quantum
limit.6 However, a linear MR has been observed in some
experiments within low fields where not all electrons are filled
into the first LL.144 Another possible theory is proposed by
Parish and Littlewood,169 arguing that the linear MR possibly
originates from large mobility fluctuations induced by disorder
effects. Beyond the two theories, people also explain the giant
nonsaturating MR in the context of electron−hole compensa-
tion170 and field-induced relative shifting between Weyl-Fermi
surfaces.144 In fact, the linear MR has been observed in various
systems including not only Dirac and Weyl semimetals but also
bismuth thin films,171 InSb,172 graphene,173 and topological
insulators174,175 experimentally. There exist many possible
theories to explain the linear MR in different systems.144 Such

Figure 3. Nonlinear Hall effect from the Berry-curvature dipole. (a) Schematic of the anomalous Hall effect in a magnetic metal. Jx and JAHE
are the bias current and anomalous Hall current, respectively. J = Jx + JAHE is the total current. M denotes the magnetization. (b) Distribution
of the Berry curvature of a magnetic metal. (c) Schematic of the nonlinear Hall effect. Λ represents the Berry-curvature dipole. When
applying a bias current parallel to Λ, a nonlinear Hall current JNLHE is established in the transverse direction. (d) Distribution of the Berry
curvature in nonmagnetic, inversion-symmetry-breaking quantum materials with nonzero Λ. Λ arises from the segregation of positive and
negative Berry curvature in k space, which does not need to break the TRS. (e) In the presence of an ac current with frequency ω, the
nonlinear voltages V2ω along the longitudinal and transverse directions are detected. (a−e) Reprinted with permission from ref 147.
Copyright 2019 Springer.
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observation of giant magnetic quantum oscillations of thermal
conductivity in Weyl semimetal TaAs and proposed the chiral
zero sound as the most likely cause.160 The thermoelectric
evidence of chiral zero sound hitherto remains elusive, calling
for further experimental investigation on topological semi-
metals.
SdH Oscillations with Berry Phase π. SdH oscillation

originates from the Landau quantization of electron orbits
under high magnetic fields. The oscillation can be described by

Lifshitz−Kosevich formula π ϕ+( )cos 2 F
B

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑ, where B is the

magnitude of magnetic field, F is the oscillation frequency, and
ϕ is the phase factor correlated with the Fermi surface
topology.140 It is widely believed that an energy band with
linear dispersion would introduce a π Berry phase,161,162

leading to ϕ = 0 and ±1/8 (+ for hole, − for electron carrier)
in 2D and 3D systems, respectively. In this regime, 3D
topological semimetals are expected to harbor a phase ϕ= ±1/
8 in the SdH oscillations. The quantity ϕ can be
experimentally accessed by analyzing the Landau fan diagram
of SdH oscillations. A crucial issue here is that whether integer
or half-integer Landau indices correspond to the resistivity
peaks in SdH oscillations. A recent theoretical work on Weyl
and Dirac semimetals demonstrates that the resistivity peaks
appear at the Landau band edges and should be assigned
integer indices.140 Moreover, the phase factor ϕ of Dirac
semimetals or Weyl semimetals with TRS is predicted to take
the value of ±1/8 or ±5/8, which is consistent with the phase
shift observed in previous experiments.146,163−165 In contrast,
for Weyl semimetals with broken TRS, the phase factor
undergoes a nonmonotonic evolution with varying Fermi

energy and approaches a wide range between ±7/8 and ±9/8
near the Lifshitz point.140

In addition, the SdH oscillations can also be used to analyze
the geometry of Fermi surface of topological semimetals, like
Cd3As2,

165 through the angle-dependent oscillation frequency.
Most interestingly, the evolution of Berry phase in certain
processes may be obtained by analyzing SdH oscillations,164,166

which can be used as an effective detection method to reveal
the possible topological phase transition.

Large Linear MR. A giant positive linear MR has been
observed in topological semimetals under a high magnetic
field.135,145,163,167 Many possible physical origins about the
linear MR have been proposed. The Abrikosov theory,168

known as the quantum linear MR model, shows that a
nonsaturating linear MR can occur in 3D gapless semi-
conductors with the linear dispersion when all electrons are
filled into the first Landau level (LL), that is, the quantum
limit.6 However, a linear MR has been observed in some
experiments within low fields where not all electrons are filled
into the first LL.144 Another possible theory is proposed by
Parish and Littlewood,169 arguing that the linear MR possibly
originates from large mobility fluctuations induced by disorder
effects. Beyond the two theories, people also explain the giant
nonsaturating MR in the context of electron−hole compensa-
tion170 and field-induced relative shifting between Weyl-Fermi
surfaces.144 In fact, the linear MR has been observed in various
systems including not only Dirac and Weyl semimetals but also
bismuth thin films,171 InSb,172 graphene,173 and topological
insulators174,175 experimentally. There exist many possible
theories to explain the linear MR in different systems.144 Such

Figure 3. Nonlinear Hall effect from the Berry-curvature dipole. (a) Schematic of the anomalous Hall effect in a magnetic metal. Jx and JAHE
are the bias current and anomalous Hall current, respectively. J = Jx + JAHE is the total current. M denotes the magnetization. (b) Distribution
of the Berry curvature of a magnetic metal. (c) Schematic of the nonlinear Hall effect. Λ represents the Berry-curvature dipole. When
applying a bias current parallel to Λ, a nonlinear Hall current JNLHE is established in the transverse direction. (d) Distribution of the Berry
curvature in nonmagnetic, inversion-symmetry-breaking quantum materials with nonzero Λ. Λ arises from the segregation of positive and
negative Berry curvature in k space, which does not need to break the TRS. (e) In the presence of an ac current with frequency ω, the
nonlinear voltages V2ω along the longitudinal and transverse directions are detected. (a−e) Reprinted with permission from ref 147.
Copyright 2019 Springer.
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Wang, Ye, Yu, and Liao, ACS Nano 14, 3755 (2020)
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Nonlinear Hall effect

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ
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curvature over the occupied states, defined as
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It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−
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Dyx, Dyz, and Dzy terms. A further consideration of
MxT ðc⃗=2Þ symmetry eliminates the Dyz and Dzy terms
as well. Thus, only two terms, Dxy and Dyx, survive
in Td-MoTe2.
The nonvanishing nature of theDxy andDyx terms can be

anticipated from the Berry curvature distribution plot on the
Fermi surface [Figs. 3(a) and 3(b)]. Because of the complex
metallic bands with anisotropic group velocities in type-II
Weyl semimetals, the Fermi surface has significant Berry
curvature even away from the WPs. This renders the
BCDM more sensitive to the chemical potential than for
type-I Weyl semimetals [72]. Figure 3(c) shows that Dyx is
peaked near the Fermi level, while Dxy exhibits oscillating
behavior. At EF, Dxy and Dyx are estimated to be 0.04 and
0.17, respectively [74]. These values are smaller than the
corresponding Dxy ¼ 0.8 and Dyx ¼ −0.7 reported for
Td-MoTe2 by Zhang et al. [41]. The main reason behind
this difference is the strong sensitivity of the Fermi surface
to the on-site HubbardU of Mo 4d electrons [43,44], which
was not taken into account in the previous study [75].
From Eq. (1), the nonlinear conductivity tensor has

nonzero terms χxxz ¼ −χzxx associated with Dxy, and
χzyy ¼ −χyyz associated withDyx. In view of the significant
peak inDyx near EF, one interesting measurement would be
the observation of a transverse current jz induced by an
oscillating electric field along y direction. In the ω → 0
limit, an external electric field applied along the y direction,
i.e., the chain direction, generates an out-of-plane current
j0z ¼ 2χzyyjEyj2. If one can raise the electron chemical
potential via gating, the transverse current j0z is predicted to
rapidly reach its maximum and then decrease and even-
tually reverse its sign.

Here, we stress that a structural transition from the Td-A
to Td-B phase flips the sign of Dab while keeping its
magnitude intact, thus allowing one to distinguish between
the two variants of polar Td phases [76]. For this purpose,
observation of Dxy via j0z ¼ 2χzxxjExj2 may be most
suitable, since the sign of Dxy is less sensitive to the
electron chemical potential.
An interesting aspect of the nonlinear Hall conductivity

in this system is that, because the surfaces have lower
symmetry than the bulk, new components of the D tensor
are activated at the surface. In particular, the glide mirror
MxT ðc⃗=2Þ is broken at the (001) cleavage surface. Recall
that the Dyz and Dzy tensor elements were argued to vanish
in the bulk because of this glide mirror, but they need not
vanish at the surface. Thus, response currents associated
with the conductivity tensor elements χyyx ¼ −χxyy and
χxzz ¼ −χzzx are allowed. While we can confidently predict
the existence of such currents, we are not currently in a
position to compute the surface D tensors quantitatively.
This observation thus provides a challenge for future efforts
at both theoretical prediction and experimental detection of
surface nonlinear Hall responses.
We may also consider the symmetries that remain in the

exfoliated few-layer limit. In fact, the χyyx ¼ −χxyy ∝ Dyz
tensor elements are the only ones to survive in this limit.
The other terms, proportional to Ωx or Ωy, are not well
defined in two dimensions. Therefore, measuring the in-
plane nonlinear Hall conductivity of MoTe2 with respect to
the film thickness may reveal a noticeable transition from
the film to the surface responses.
In principle, one can utilize the nonlinear response

current generated due to the rapid fluctuation of Dyx and
its sign reversal near the Fermi level as a function of the
chemical potential to devise a nonlinear Hall transistor for
practical applications. Moreover, recent experiments
[18,77] demonstrated an ultrafast optical control over Td
and 1T0 structural phase transitions; hence, an ultrafast
topological optical switch can be designed using the
nonlinear quantum Hall property of MoTe2, where Td
(1T0) phase can act as an ON (OFF) state.
Unlike in polar insulators, in which the switching of

polarity is immediately manifested in a polarization switch-
ing current, a corresponding experimental response is
missing in the case of polar metals. Here, we propose that
the NLHE may serve as a potential experimental response
to detect the polarization direction/switching in polar
metals, particularly, in nonmagnetic Weyl semimetals.
As demonstrated above, the polarization switching in
Weyl semimetals is always accompanied by the reversal
of the nonlinear Hall response.
In summary, we explain the intricate structural phase

transitions in MoTe2 by defining a high-symmetry non-
polar phase T0 that exhibits a higher-order topology. We
unveil the connection between the Weyl phase and the
higher-order topological phase in MoTe2. We report that
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FIG. 3. Calculated Berry curvature (a) Ωx and (b) Ωy on the
Fermi surface of MoTe2 in Td-A phase. Yellow (Blue) color
represents positive (negative) Berry curvature. (c) Calculated
BCDM of MoTe2 in Td-A phase. The nonvanishing Dxy and Dyz
terms are plotted with respect to the chemical potential.
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Liouville’s theorem on the conservation of phase-space volume is violated by Berry phase in the
semiclassical dynamics of Bloch electrons. This leads to a modification of the phase-space density of
states, whose significance is discussed in a number of examples: field modification of the Fermi-sea
volume, connection to the anomalous Hall effect, and a general formula for orbital magnetization. The
effective quantum mechanics of Bloch electrons is also sketched, where the modified density of states
plays an essential role.
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Semiclassical dynamics of Bloch electrons in external
fields has provided a powerful theoretical framework to
account for various properties of metals, semiconductors,
and insulators [1]. In recent years, it has become increas-
ingly clear that essential modification of the semiclassical
dynamics is necessary for a proper understanding of a
number of phenomena. It was known earlier that global
geometric phase effects [2,3] on Bloch states are very
important for insulators in our understanding of the quan-
tum Hall effect [4], quantized adiabatic pumps [5], and
electric polarization [6,7]. It was shown [8,9] later that
geometric phase also modifies the local dynamics of
Bloch electrons and thus affects the transport properties
of metals and semiconductors. Recently these ideas have
been successfully applied to the anomalous Hall effect in
ferromagnetic semiconductors and metals [10–13], as well
as spin transport [14,15].

In this Letter, we reveal a general property of the Berry
phase modified semiclassical dynamics which has been
overlooked so far: the violation of Liouville’s theorem
for the conservation of phase-space volume. Liouville’s
theorem was originally established for standard classical
Hamiltonian dynamics, and its importance cannot be over-
emphasized as it serves as a foundation for classical sta-
tistical physics. The Berry phase makes, in general, the
equations of motion noncanonical [8,9,16–18], rendering
the violation of Liouville’s theorem. Nevertheless, we are
able to remedy the situation by modifying the density of
states in the phase space.

This modified phase-space density of states enters natu-
rally in the semiclassical expression for the expectation
value of physical quantities, and has profound effects on
equilibrium as well as transport properties. We demon-
strate this with several examples. First, we consider a
Fermi sea of electrons in a weak magnetic field, and
show that the Fermi-sea volume can be changed linearly
by the field. Second, we show how the Berry phase formula
for the intrinsic anomalous Hall conductivity may be de-
rived from equilibrium thermodynamics using the Středa
formula [19]. Third, we provide a general derivation of an

orbital-magnetization formula which is convenient for
first-principles calculations.

In addition, we present an effective quantum mechanics
for Bloch electrons in solids by quantizing the semiclassi-
cal dynamics with the geometric phase. The density of
states enters in a nontrivial manner into the commutators
of the phase-space coordinates, and relates directly to the
minimal uncertainty volume in the phase space.

To begin with, we write down the semiclassical equa-
tions of motion for a Bloch electron in weak electric and
magnetic fields [9]

_r ! 1

@
@"n"k#
@k

$ _k%!n"k#; (1a)

@ _k ! $eE"r# $ e _r%B"r#; (1b)

where !n"k# is the Berry curvature of electronic Bloch
states defined by !n"k# ! ihrkun"k#j% jrkun"k#i with
jun"k#i being the periodic part of Bloch waves in the nth
band; "n"k# is the band energy with a correction due to the
orbital magnetic moment [see Eq. (10) and above]. For
crystals with broken time-reversal symmetry (such as fer-
romagnetic materials) or spatial inversion symmetry (such
as GaAs), the Berry curvature !n"k# is nonzero.

To show the violation of Liouville’s theorem, we con-
sider the time evolution of a volume element !V ! !r!k
in the phase space. The equation of motion for !V is given
by "1=!V#d!V=dt ! rr & _r' rk & _k [20]. A straightfor-
ward but somewhat tedious calculation shows that the
right-hand side is equal to$d ln"1' eB &!=@#=dt, which
is a total time derivative. Therefore we can solve for the
time evolution of the volume element and obtain

!V ! !V0="1' eB &!n=@#: (2)

The fact that the Berry curvature is generally k dependent
(and the magnetic field can also depend on r) implies that
the phase-space volume element changes during time evo-
lution of the state variables "r; k#.

Nevertheless, we have a remedy to this breakdown of
Liouville’s theorem. Equation (2) shows that the volume
element is a local function of the state variables (through
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depend on the boundary condition. Here the boundary
is merely a tool to expose the “free current” contribu-
tion because in a uniform system, the magnetization cur-
rent always vanishes in the bulk. Finally, in more rigor-
ous approaches !Xiao et al., 2005; Shi et al., 2007" the
boundary is not needed and the derivation is based on a
pure bulk picture. It is similar to the quantum Hall ef-
fect, which can be understood in terms of either the bulk
states !Thouless et al., 1982" or the edge states !Halperin,
1982".

C. Dipole moment

The finite size of the wave packet not only allows an
orbital magnetic moment but also leads to the concept
of the dipole moment associated with an operator.

The dipole moment appears naturally when we con-
sider the thermodynamic average of a physical quantity,
with its operator denoted by Ô. In the wave-packet ap-
proach, the operator is given by

O!r" =# drcdqc

!2!"3 g!rc,qc"$W%Ô"!r − r̂"%W& , !4.15"

where g!r ,q" is the distribution function, $W%¯ %W& de-
notes the expectation in the wave-packet state, and "!r
− r̂" plays the role as a sampling function, as shown in
Fig. 9. An intuitive way to view Eq. !4.15" is to think of
the wave packets as small molecules, then Eq. !4.15" is
the quantum-mechanical version of the familiar coarse
graining process which averages over the length scale
larger than the size of the wave packet. A multipole
expansion can be carried out. But for most purposes the
dipole term is enough. Expand the " function to first
order of r̂−rc:

"!r − r̂" = "!r − rc" − !r̂ − rc" · !"!r − rc" . !4.16"

Inserting the function into Eq. !4.15" yields

O!r" =# dq
!2!"3g!r,q"%$W%Ô%W&%rc=r

− ! ·# dq
!2!"3g!r,q"%$W%Ô!r̂ − rc"%W&%rc=r.

!4.17"

The first term is obtained if the wave packet is treated as
a point particle. The second term is due to the finite size
of the wave packet. We can see that the bracket in the
second integral has the form of a dipole of the operator
O defined by

PÔ = $W%Ô!r̂ − rc"%W& . !4.18"

The dipole moment of an observable is a general conse-
quence of the wave-packet approach and must be in-
cluded in the semiclassical theory. Its contribution ap-
pears only when the system is inhomogeneous.

In particular, we find the following:

!1" If Ô=e, then Pe=0. This is consistent with the fact
that the charge center coincides with the mass cen-
ter of the electron.

!2" If Ô= v̂, one finds the expression for the local cur-
rent,

jL =# dq
!2!"3g!r,q"ṙ + ! ## dq

!2!"3g!r,q"m!q" .

!4.19"

We explain the meaning of local later. Interestingly,
this is the second time we encounter the quantity
m!q" but in an entirely different context. The physi-
cal meaning of the second term becomes transparent
if we make reference to the self-rotation of the wave
packet. The self-rotation can be thought as localized
circuit. Therefore if the distribution is not uniform,
the localized circuit will contribute to the local cur-
rent jL !see Fig. 10".

!3" If Ô is the spin operator ŝ, then Eq. !4.18" gives the
spin dipole

Ps = $u%s'i
!

!q
− Aq(%u& . !4.20"

The spin dipole shows that in general the spin center
and the mass center do not coincide, which is usually

L

rrc

l

FIG. 9. Sampling function and a wave packet at rc. The width
L of the sampling function is sufficiently small so that it can be
treated as a " function at the macroscopic level and is suffi-
ciently large so that it contains a large number of wave packets
of width l inside its range. Equation !4.15" is indeed a micro-
scopic average over the distance L around the point r. See Sec.
6.6 in Jackson !1998" for an analogy in macroscopic electro-
magnetism.

wave packet

W(r;rc ,kc)

rc

FIG. 10. The wave-packet description of a charge carrier
whose center is !rc ,qc". A wave packet generally possesses two
kinds of motion: the center-of-mass motion and the self-
rotation around its center. From Xiao, Yao, et al., 2006.
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Dynamics of wave packet:

This underlies the discussion of Boltzmann transport in 
most textbooks. But it is missing a term!
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Semiclassical dynamics of Bloch electrons in external
fields has provided a powerful theoretical framework to
account for various properties of metals, semiconductors,
and insulators [1]. In recent years, it has become increas-
ingly clear that essential modification of the semiclassical
dynamics is necessary for a proper understanding of a
number of phenomena. It was known earlier that global
geometric phase effects [2,3] on Bloch states are very
important for insulators in our understanding of the quan-
tum Hall effect [4], quantized adiabatic pumps [5], and
electric polarization [6,7]. It was shown [8,9] later that
geometric phase also modifies the local dynamics of
Bloch electrons and thus affects the transport properties
of metals and semiconductors. Recently these ideas have
been successfully applied to the anomalous Hall effect in
ferromagnetic semiconductors and metals [10–13], as well
as spin transport [14,15].

In this Letter, we reveal a general property of the Berry
phase modified semiclassical dynamics which has been
overlooked so far: the violation of Liouville’s theorem
for the conservation of phase-space volume. Liouville’s
theorem was originally established for standard classical
Hamiltonian dynamics, and its importance cannot be over-
emphasized as it serves as a foundation for classical sta-
tistical physics. The Berry phase makes, in general, the
equations of motion noncanonical [8,9,16–18], rendering
the violation of Liouville’s theorem. Nevertheless, we are
able to remedy the situation by modifying the density of
states in the phase space.

This modified phase-space density of states enters natu-
rally in the semiclassical expression for the expectation
value of physical quantities, and has profound effects on
equilibrium as well as transport properties. We demon-
strate this with several examples. First, we consider a
Fermi sea of electrons in a weak magnetic field, and
show that the Fermi-sea volume can be changed linearly
by the field. Second, we show how the Berry phase formula
for the intrinsic anomalous Hall conductivity may be de-
rived from equilibrium thermodynamics using the Středa
formula [19]. Third, we provide a general derivation of an

orbital-magnetization formula which is convenient for
first-principles calculations.

In addition, we present an effective quantum mechanics
for Bloch electrons in solids by quantizing the semiclassi-
cal dynamics with the geometric phase. The density of
states enters in a nontrivial manner into the commutators
of the phase-space coordinates, and relates directly to the
minimal uncertainty volume in the phase space.

To begin with, we write down the semiclassical equa-
tions of motion for a Bloch electron in weak electric and
magnetic fields [9]
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where !n"k# is the Berry curvature of electronic Bloch
states defined by !n"k# ! ihrkun"k#j% jrkun"k#i with
jun"k#i being the periodic part of Bloch waves in the nth
band; "n"k# is the band energy with a correction due to the
orbital magnetic moment [see Eq. (10) and above]. For
crystals with broken time-reversal symmetry (such as fer-
romagnetic materials) or spatial inversion symmetry (such
as GaAs), the Berry curvature !n"k# is nonzero.

To show the violation of Liouville’s theorem, we con-
sider the time evolution of a volume element !V ! !r!k
in the phase space. The equation of motion for !V is given
by "1=!V#d!V=dt ! rr & _r' rk & _k [20]. A straightfor-
ward but somewhat tedious calculation shows that the
right-hand side is equal to$d ln"1' eB &!=@#=dt, which
is a total time derivative. Therefore we can solve for the
time evolution of the volume element and obtain

!V ! !V0="1' eB &!n=@#: (2)

The fact that the Berry curvature is generally k dependent
(and the magnetic field can also depend on r) implies that
the phase-space volume element changes during time evo-
lution of the state variables "r; k#.

Nevertheless, we have a remedy to this breakdown of
Liouville’s theorem. Equation (2) shows that the volume
element is a local function of the state variables (through
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depend on the boundary condition. Here the boundary
is merely a tool to expose the “free current” contribu-
tion because in a uniform system, the magnetization cur-
rent always vanishes in the bulk. Finally, in more rigor-
ous approaches !Xiao et al., 2005; Shi et al., 2007" the
boundary is not needed and the derivation is based on a
pure bulk picture. It is similar to the quantum Hall ef-
fect, which can be understood in terms of either the bulk
states !Thouless et al., 1982" or the edge states !Halperin,
1982".

C. Dipole moment

The finite size of the wave packet not only allows an
orbital magnetic moment but also leads to the concept
of the dipole moment associated with an operator.

The dipole moment appears naturally when we con-
sider the thermodynamic average of a physical quantity,
with its operator denoted by Ô. In the wave-packet ap-
proach, the operator is given by

O!r" =# drcdqc

!2!"3 g!rc,qc"$W%Ô"!r − r̂"%W& , !4.15"

where g!r ,q" is the distribution function, $W%¯ %W& de-
notes the expectation in the wave-packet state, and "!r
− r̂" plays the role as a sampling function, as shown in
Fig. 9. An intuitive way to view Eq. !4.15" is to think of
the wave packets as small molecules, then Eq. !4.15" is
the quantum-mechanical version of the familiar coarse
graining process which averages over the length scale
larger than the size of the wave packet. A multipole
expansion can be carried out. But for most purposes the
dipole term is enough. Expand the " function to first
order of r̂−rc:

"!r − r̂" = "!r − rc" − !r̂ − rc" · !"!r − rc" . !4.16"

Inserting the function into Eq. !4.15" yields

O!r" =# dq
!2!"3g!r,q"%$W%Ô%W&%rc=r

− ! ·# dq
!2!"3g!r,q"%$W%Ô!r̂ − rc"%W&%rc=r.

!4.17"

The first term is obtained if the wave packet is treated as
a point particle. The second term is due to the finite size
of the wave packet. We can see that the bracket in the
second integral has the form of a dipole of the operator
O defined by

PÔ = $W%Ô!r̂ − rc"%W& . !4.18"

The dipole moment of an observable is a general conse-
quence of the wave-packet approach and must be in-
cluded in the semiclassical theory. Its contribution ap-
pears only when the system is inhomogeneous.

In particular, we find the following:

!1" If Ô=e, then Pe=0. This is consistent with the fact
that the charge center coincides with the mass cen-
ter of the electron.

!2" If Ô= v̂, one finds the expression for the local cur-
rent,

jL =# dq
!2!"3g!r,q"ṙ + ! ## dq

!2!"3g!r,q"m!q" .

!4.19"

We explain the meaning of local later. Interestingly,
this is the second time we encounter the quantity
m!q" but in an entirely different context. The physi-
cal meaning of the second term becomes transparent
if we make reference to the self-rotation of the wave
packet. The self-rotation can be thought as localized
circuit. Therefore if the distribution is not uniform,
the localized circuit will contribute to the local cur-
rent jL !see Fig. 10".

!3" If Ô is the spin operator ŝ, then Eq. !4.18" gives the
spin dipole

Ps = $u%s'i
!

!q
− Aq(%u& . !4.20"

The spin dipole shows that in general the spin center
and the mass center do not coincide, which is usually

L

rrc

l

FIG. 9. Sampling function and a wave packet at rc. The width
L of the sampling function is sufficiently small so that it can be
treated as a " function at the macroscopic level and is suffi-
ciently large so that it contains a large number of wave packets
of width l inside its range. Equation !4.15" is indeed a micro-
scopic average over the distance L around the point r. See Sec.
6.6 in Jackson !1998" for an analogy in macroscopic electro-
magnetism.

wave packet

W(r;rc ,kc)

rc

FIG. 10. The wave-packet description of a charge carrier
whose center is !rc ,qc". A wave packet generally possesses two
kinds of motion: the center-of-mass motion and the self-
rotation around its center. From Xiao, Yao, et al., 2006.
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Dynamics of wave packet:

Recall that W vanishes if inversion and TR are present.
Otherwise, must be included for anomalous Hall, etc!

Anomalous 
velocity 
term

Good review: D. Xiao, M.-C. Chang and Q. Niu, RMP 82, 1959 (2010) .



QMS23, August 21-25, 2023

Density of states renormalization

220 Topological Insulators and Semimetals

time τ is long; conversely, it becomes negligible in the dirty limit. After inverting
the conductivity tensor, the intrinsic mechanism implies a transverse resistivity ρyx

scaling as the square of the longitudinal resistivity ρxx, in contrast to the linear
dependence expected for skew scattering. However, the side-jump contribution
scales similarly to the intrinsic one, making an experimental identification of
the dominant mechanisms difficult. Uncertainties associated with the treatment
of phonon and spin-wave contributions add to the confusion, so that the matter
remained unsettled for many years.

In the absence of an intuitive physical picture of the predicted anomalous
velocity and the lack of reliable predictions from band structure calculations,
the Karplus–Luttinger theory was initially not well accepted. The first of these
obstacles began to dissipate as a series of authors (Chang and Niu, 1996; Haldane,
2004; Jungwirth, 2002; Onoda and Nagaosa, 2002; Sundaram and Niu, 1999)
reexamined the Karplus–Luttinger theory in the modern language of Berry phases
and curvatures, by making the transition from Eq. (5.6) to Eq. (5.8) such that the
AHC is expressed in terms of the Berry curvature integrated over the occupied
Fermi sea. Furthermore, using Stokes’ theorem σyx can be reexpressed in terms of
the Berry phase computed around the boundary of the occupied Fermi sea in 2D, or
the kz average of Berry phases on fixed-kz slices in 3D (Haldane, 2004; Jungwirth,
2002; Wang et al., 2007).

The meaning of this Berry-curvature formulation was further clarified in the
context of a semiclassical formulation of electron dynamics by Chang and Niu
(1996) and Sundaram and Niu (1999), as nicely reviewed by Chang and Niu (2008)
and Xiao et al. (2010). Denoting the real-space and reciprocal-space centroids of
an electron wave packet in a crystal as r and k, respectively, these authors showed
that these variables evolve under weak electric and magnetic fields according to the
equations of motion

ṙ = vg − k̇ × ! , (5.11a)

k̇ = − e
h̄
E − e

h̄c
ṙ × B , (5.11b)

where vg = h̄−1∇kEnk is the group velocity. Except for the k̇ × ! term, these are
the standard equations of semiclassical transport theory found in elementary
textbooks. Keeping only the first term on the right side of each equation and writing
eE = ∇rV(r), these relations become Hamilton’s equations of motion ṙ = ∇(h̄k)Enk

and h̄k̇ = −∇rV for the conjugate pair (r, h̄k) with Enk and V as kinetic and
potential energies. The second term in Eq. (5.11b) accounts for the Lorentz force
(q/c)v × B (written in Gaussian units).

Importantly, there is now also a second term in Eq. (5.11a), known as
the anomalous velocity term, involving the Berry curvature !. Note that

Wavepacket equations of motion:

Move all r-dot, k-dot terms to left side: 
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Of course, particle number really is conserved. This becomes self-evident
when we remember the Nielsen–Ninomiya theorem, which ensures that the sum
of chiralities vanishes. Thus, the total dn/dt is zero due to cancellation of the
contributions from Weyl points of positive and negative chirality. In fact, the chiral
anomaly can be regarded as providing an alternative proof of the Nielson–Ninomiya
theorem via a charge-conservation argument.

The chiral anomaly is often derived via a consideration of the properties of the
Landau-level spectrum in the presence of a finite magnetic field; this argument is
sketched, for example, in Section II.C.2 of the review by Armitage et al. (2018).
As an alternative, we will sketch a semiclassical argument along the lines of one
given by Son and Spivak (2013). We simply apply the semiclassical equations of
motion given in Eq. (5.11), crucially including the anomalous velocity term in
Eq. (5.11a), to the case of spatially uniform E and B fields. After several
manipulations designed to move all terms involving ṙ and k̇ to the left, we obtain
(see Ex. 5.19)

(
1 + e

h̄c
B · !

)
ṙ = vg + e

h̄
E × ! + e

h̄c
(vg · !) B , (5.39a)

(
1 + e

h̄c
B · !

)
k̇ = − e

h̄
E − e

h̄c
vg × B − e2

h̄2c
(E · B)! . (5.39b)

The factor (1 + eB · !/h̄c) appearing on the left-hand sides is a density-of-
states enhancement factor that arises when Berry curvature and magnetic fields
are both present. As explained by Xiao et al. (2005), it can be derived based on a
reconsideration of Liouville’s theorem on the conservation of phase-space volume
in light of Eq. (5.11). The physics is basically the same as that of the Středa formula
discussed on p. 33. There we worked in 2D; in that context, we can combine
Eq. (1.34) with Eq. (5.8) for a single band to get

!n = 1
(2π)2

∫ (
e
h̄c

B⊥#xy

)
f (k) d2k (5.40)

where f (k) is an occupation factor. The zero-field density n0 is given by
Eq. (5.40) but without the factor in parentheses, so !n/n0 = eB⊥#xy/h̄c, giving
an enhancement ratio of 1 + eB · !/h̄c when generalized to 3D.

To derive the chiral anomaly, we track the flow of occupied wave packets in
k-space as expressed by Eq. (5.39b). The k-space flux density F , defined as dk/dt
times the density of states per “phase space” volume d3r d3k, is just (2π)−3 times
the left-hand side of Eq. (5.39b). If there is an electron pocket surrounding the Weyl

DOS in phase space = (2π)−3
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Berry Phase Correction to Electron Density of States in Solids
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Liouville’s theorem on the conservation of phase-space volume is violated by Berry phase in the
semiclassical dynamics of Bloch electrons. This leads to a modification of the phase-space density of
states, whose significance is discussed in a number of examples: field modification of the Fermi-sea
volume, connection to the anomalous Hall effect, and a general formula for orbital magnetization. The
effective quantum mechanics of Bloch electrons is also sketched, where the modified density of states
plays an essential role.

DOI: 10.1103/PhysRevLett.95.137204 PACS numbers: 73.43.2f, 72.15.2v, 75.20.2g

Semiclassical dynamics of Bloch electrons in external
fields has provided a powerful theoretical framework to
account for various properties of metals, semiconductors,
and insulators [1]. In recent years, it has become increas-
ingly clear that essential modification of the semiclassical
dynamics is necessary for a proper understanding of a
number of phenomena. It was known earlier that global
geometric phase effects [2,3] on Bloch states are very
important for insulators in our understanding of the quan-
tum Hall effect [4], quantized adiabatic pumps [5], and
electric polarization [6,7]. It was shown [8,9] later that
geometric phase also modifies the local dynamics of
Bloch electrons and thus affects the transport properties
of metals and semiconductors. Recently these ideas have
been successfully applied to the anomalous Hall effect in
ferromagnetic semiconductors and metals [10–13], as well
as spin transport [14,15].

In this Letter, we reveal a general property of the Berry
phase modified semiclassical dynamics which has been
overlooked so far: the violation of Liouville’s theorem
for the conservation of phase-space volume. Liouville’s
theorem was originally established for standard classical
Hamiltonian dynamics, and its importance cannot be over-
emphasized as it serves as a foundation for classical sta-
tistical physics. The Berry phase makes, in general, the
equations of motion noncanonical [8,9,16–18], rendering
the violation of Liouville’s theorem. Nevertheless, we are
able to remedy the situation by modifying the density of
states in the phase space.

This modified phase-space density of states enters natu-
rally in the semiclassical expression for the expectation
value of physical quantities, and has profound effects on
equilibrium as well as transport properties. We demon-
strate this with several examples. First, we consider a
Fermi sea of electrons in a weak magnetic field, and
show that the Fermi-sea volume can be changed linearly
by the field. Second, we show how the Berry phase formula
for the intrinsic anomalous Hall conductivity may be de-
rived from equilibrium thermodynamics using the Středa
formula [19]. Third, we provide a general derivation of an

orbital-magnetization formula which is convenient for
first-principles calculations.

In addition, we present an effective quantum mechanics
for Bloch electrons in solids by quantizing the semiclassi-
cal dynamics with the geometric phase. The density of
states enters in a nontrivial manner into the commutators
of the phase-space coordinates, and relates directly to the
minimal uncertainty volume in the phase space.

To begin with, we write down the semiclassical equa-
tions of motion for a Bloch electron in weak electric and
magnetic fields [9]

_r ! 1

@
@"n"k#
@k

$ _k%!n"k#; (1a)

@ _k ! $eE"r# $ e _r%B"r#; (1b)

where !n"k# is the Berry curvature of electronic Bloch
states defined by !n"k# ! ihrkun"k#j% jrkun"k#i with
jun"k#i being the periodic part of Bloch waves in the nth
band; "n"k# is the band energy with a correction due to the
orbital magnetic moment [see Eq. (10) and above]. For
crystals with broken time-reversal symmetry (such as fer-
romagnetic materials) or spatial inversion symmetry (such
as GaAs), the Berry curvature !n"k# is nonzero.

To show the violation of Liouville’s theorem, we con-
sider the time evolution of a volume element !V ! !r!k
in the phase space. The equation of motion for !V is given
by "1=!V#d!V=dt ! rr & _r' rk & _k [20]. A straightfor-
ward but somewhat tedious calculation shows that the
right-hand side is equal to$d ln"1' eB &!=@#=dt, which
is a total time derivative. Therefore we can solve for the
time evolution of the volume element and obtain

!V ! !V0="1' eB &!n=@#: (2)

The fact that the Berry curvature is generally k dependent
(and the magnetic field can also depend on r) implies that
the phase-space volume element changes during time evo-
lution of the state variables "r; k#.

Nevertheless, we have a remedy to this breakdown of
Liouville’s theorem. Equation (2) shows that the volume
element is a local function of the state variables (through
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depend on the boundary condition. Here the boundary
is merely a tool to expose the “free current” contribu-
tion because in a uniform system, the magnetization cur-
rent always vanishes in the bulk. Finally, in more rigor-
ous approaches !Xiao et al., 2005; Shi et al., 2007" the
boundary is not needed and the derivation is based on a
pure bulk picture. It is similar to the quantum Hall ef-
fect, which can be understood in terms of either the bulk
states !Thouless et al., 1982" or the edge states !Halperin,
1982".

C. Dipole moment

The finite size of the wave packet not only allows an
orbital magnetic moment but also leads to the concept
of the dipole moment associated with an operator.

The dipole moment appears naturally when we con-
sider the thermodynamic average of a physical quantity,
with its operator denoted by Ô. In the wave-packet ap-
proach, the operator is given by

O!r" =# drcdqc

!2!"3 g!rc,qc"$W%Ô"!r − r̂"%W& , !4.15"

where g!r ,q" is the distribution function, $W%¯ %W& de-
notes the expectation in the wave-packet state, and "!r
− r̂" plays the role as a sampling function, as shown in
Fig. 9. An intuitive way to view Eq. !4.15" is to think of
the wave packets as small molecules, then Eq. !4.15" is
the quantum-mechanical version of the familiar coarse
graining process which averages over the length scale
larger than the size of the wave packet. A multipole
expansion can be carried out. But for most purposes the
dipole term is enough. Expand the " function to first
order of r̂−rc:

"!r − r̂" = "!r − rc" − !r̂ − rc" · !"!r − rc" . !4.16"

Inserting the function into Eq. !4.15" yields

O!r" =# dq
!2!"3g!r,q"%$W%Ô%W&%rc=r

− ! ·# dq
!2!"3g!r,q"%$W%Ô!r̂ − rc"%W&%rc=r.

!4.17"

The first term is obtained if the wave packet is treated as
a point particle. The second term is due to the finite size
of the wave packet. We can see that the bracket in the
second integral has the form of a dipole of the operator
O defined by

PÔ = $W%Ô!r̂ − rc"%W& . !4.18"

The dipole moment of an observable is a general conse-
quence of the wave-packet approach and must be in-
cluded in the semiclassical theory. Its contribution ap-
pears only when the system is inhomogeneous.

In particular, we find the following:

!1" If Ô=e, then Pe=0. This is consistent with the fact
that the charge center coincides with the mass cen-
ter of the electron.

!2" If Ô= v̂, one finds the expression for the local cur-
rent,

jL =# dq
!2!"3g!r,q"ṙ + ! ## dq

!2!"3g!r,q"m!q" .

!4.19"

We explain the meaning of local later. Interestingly,
this is the second time we encounter the quantity
m!q" but in an entirely different context. The physi-
cal meaning of the second term becomes transparent
if we make reference to the self-rotation of the wave
packet. The self-rotation can be thought as localized
circuit. Therefore if the distribution is not uniform,
the localized circuit will contribute to the local cur-
rent jL !see Fig. 10".

!3" If Ô is the spin operator ŝ, then Eq. !4.18" gives the
spin dipole

Ps = $u%s'i
!

!q
− Aq(%u& . !4.20"

The spin dipole shows that in general the spin center
and the mass center do not coincide, which is usually
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FIG. 9. Sampling function and a wave packet at rc. The width
L of the sampling function is sufficiently small so that it can be
treated as a " function at the macroscopic level and is suffi-
ciently large so that it contains a large number of wave packets
of width l inside its range. Equation !4.15" is indeed a micro-
scopic average over the distance L around the point r. See Sec.
6.6 in Jackson !1998" for an analogy in macroscopic electro-
magnetism.

wave packet

W(r;rc ,kc)

rc

FIG. 10. The wave-packet description of a charge carrier
whose center is !rc ,qc". A wave packet generally possesses two
kinds of motion: the center-of-mass motion and the self-
rotation around its center. From Xiao, Yao, et al., 2006.

1979Xiao, Chang, and Niu: Berry phase effects on electronic properties

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010

1

M =
e

2~c
X

n

Z
d
3
k

(2⇡)3
fnk Im hrkunk|⇥ (Hk + Enk � 2EF)|rkunki

Decomposition from Wannier derivation:

MLC =
e

2~c
X

n

Z
d
3
k

(2⇡)3
fnk Im hrkunk|⇥ (Hk � EF)|rkunki

MIC =
e

2~c
X

n

Z
d
3
k

(2⇡)3
fnk Im hrkunk|⇥ [Enk � EF)|rkunki

Decomposition from semiclassical derivation:

Mmom =
e

2~c
X

n

Z
d
3
k

(2⇡)3
fnk Im hrkunk|⇥ (Hk � Enk)|rkunki

MDOS =
e

2~c
X

n

Z
d
3
k

(2⇡)3
fnk Im hrkunk|⇥ [2(Enk � EF)]|rkunki

Note

Mmom =
X

n

Z
d
3
k

(2⇡)3
fnk mnk

where

mnk =
e

2~c Im hrkunk|⇥ (Hk � Enk)|rkunki .

Magnetic moment of wave packet:

Dynamics of wave packet:

Anomalous 
velocity term
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Properties of electron in state ψnk

Quantities needed for transport, Fermi liquid theory, …
at each ψnk :
• Band energy E
• Spin moment μspin
• Orbital moment μorb
• Berry curvature Ω
And we frequently also need k derivatives like
 ∂k Enk = hbar vF for Fermi velocity
 ∂k Ωnk   for BCDM
etc.

Pseudovectors with same 
symmetry requirements
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Summary

• Berry phases and curvatures
• Anomalous Hall (AH) effect
• Quantum anomalous Hall (QAH) effect
• Nonlinear Hall effect
• Semiclassical viewpoint
• Properties of Bloch electrons

Slides available at https://is.gd/inFID2
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Physical meaning of Berry phases
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