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Why Devices?

• Societal impact
• Funding
• Focuses direction of research

Focus on topological insulators
- Band gap
- Surface States
- Lack of backscattering

- Magneto-electric effect
- Spin-momentum locking
- Accessible materials

à Great for studying charge & spin transport devices



What Devices?

• FETs
• Interconnects
• pn junctions
• Superconducting/Qubit
• Magnetic
• Emergent/tunable quantum states

Requirement for Devices:
• Dominant surface states
• Tunability (magnetic, electronic, strain, etc)
• Good material properties: low disorder, clean interfaces, etc

“Electronic devices are components for controlling the flow of electrical 
currents for the purpose of information processing and system control.”



Outline
• Device fabrication, tunability and achieving surface-state regime
• Interconnects, FETs
• TI Josephson Junctions
• Emergent Phenomena (finite momentum states)
• TI Magnetic Devices (Tomorrow!)

Goals: 
• Understand promise & limitations of topological devices
• Clarify typical experimental signals, challenges, and opportunities for transport in 

topological insulators
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In 2005, it was predicted that a simple insulator with band inversion could have 
topological properties  (even for zero applied magnetic field)

3D TIs (surface states):

2D TIs (edge states):

this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty
electronic states, which is a consequence of the quantization of the energy of atomic orbitals.
(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is
interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,
ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the
“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-
moving modes that have opposite spin and are related by time-reversal symmetry. This edge
can also be viewed as half of a quantum wire, which would have spin-up and spin-down
electrons propagating in both directions. (d) The surface of a 3D topological insulator supports
electronic motion in any direction along the surface, but the direction of the electron’s motion
uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a
“Dirac cone” structure similar to that in graphene.
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this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty
electronic states, which is a consequence of the quantization of the energy of atomic orbitals.
(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is
interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,
ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the
“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-
moving modes that have opposite spin and are related by time-reversal symmetry. This edge
can also be viewed as half of a quantum wire, which would have spin-up and spin-down
electrons propagating in both directions. (d) The surface of a 3D topological insulator supports
electronic motion in any direction along the surface, but the direction of the electron’s motion
uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a
“Dirac cone” structure similar to that in graphene.
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this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty
electronic states, which is a consequence of the quantization of the energy of atomic orbitals.
(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is
interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,
ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the
“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-
moving modes that have opposite spin and are related by time-reversal symmetry. This edge
can also be viewed as half of a quantum wire, which would have spin-up and spin-down
electrons propagating in both directions. (d) The surface of a 3D topological insulator supports
electronic motion in any direction along the surface, but the direction of the electron’s motion
uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a
“Dirac cone” structure similar to that in graphene.
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this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty
electronic states, which is a consequence of the quantization of the energy of atomic orbitals.
(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is
interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,
ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the
“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-
moving modes that have opposite spin and are related by time-reversal symmetry. This edge
can also be viewed as half of a quantum wire, which would have spin-up and spin-down
electrons propagating in both directions. (d) The surface of a 3D topological insulator supports
electronic motion in any direction along the surface, but the direction of the electron’s motion
uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a
“Dirac cone” structure similar to that in graphene.
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Kane, Moore, Phys. World 2011

e.g., BiSe

e.g., HgTe

• Strong spin-orbit coupling
• Insulating bulk
• Spin-momentum locked 

conducting surface states

3D Topological Insulators



Topological 
Materials

Goldhaber-Gordon, Rechtsman, 
Mason, Armitage, Future 
Directions Workshop series: 
“Topological Sciences,” (2019)



One of first, and best, examples of 3D TI is Bi2Se3:

D. Hseih et al., Nature 452, 970 (2008).
J. G. Analytis et al., PRB 81, 205407 (2010).

H. Zhang et al., Nat. Phys. 5, 438 (2009).

Angle resolved photoemission (ARPES) 
experiment on Bi2Se3.

•Dirac surface bandstructure and the 
topologically protected states evident.

•Gap between the bulk valence band and 
bulk conduction band is 0.35 eV.

•Topologically protected states are evident at 
room temperature

•Spin-resolved ARPES à spin-momentum 
locked surface states

3D TI: Bi2Se3



Xia, Hasan et al.  (2009)

Fermi energy of as-grown Bi2Se3 is not 
in the gap due to Se vacancies
(bulk is a metal, not an insulator)

It is difficult to measure only surface 
states, determine topological properties 
in 3D TIs via standard transport

EF

Problem common to most 3D TIs found to date

Bi2Se3: large bulk contribution to conductance

Solutions: 
- Gating (top and back)   [sometimes not strong enough] 
- Doping with Sb, Te, e.g., BST, BSTS  [may introduce disorder]
- Chemical doping   [hard to control]
- Heterostructures, e.g. BiSe/BiTe [may change properties]

Or use other materials (non-chalcogenide) 
e.g. SmB6 [Kondo insulator; complicated 
bulk behavior]



EF

1. a thin(~10nm) Sb-doped Bi2Se3 (Bi1.33Sb0.67Se3)
• Sb compensates for Se vacancies (grown by Gu)
• Exfoliate thin flakes 

3. Chemical doping with F4TCNQ
• strong electron affinity, so electrons transfer to 

interface layer
• see Kim, Cho et al, Nat. Phys. 8, 2012

 4. Apply backgate through 300nm SiO2 at low 
temperature

Al

2. Deposit contacts

=

Vbg

Bi1.33Sb0.67Se3

300nm SiO2 on heavily n-doped Si

1µm

Device fabrication and approaching TI regime
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electronhole

• Dirac point - a peak in ρxx and sign 
change in nH near Vg ~ -55V as 
charge carrier type changes.

• Bottom of bulk conduction band:
n ~ 0.8x1013/cm2 near Vg ~ -18V.

Hall measurements to make sure that we can access the topological regime

RHall = -1/(ne)

Device characterization - Hall measurement



Molecular doping to deplete bulk states

SEM image of TI (Bi2Se3) nanowire device

Length = 200nm, width = 110nm, thickness = 15nm

100nm

Bi2Se2 nanowire

AuAu

B field

VI ....

.
Vg

Ti/Au
Bi2Se3

nanowire SiO2 SiF4 -TCNQ

- Scotch tape exfoliate, hunt for nanowires

Fabricating BiSe Devices
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High conductance in nanowire!

SEM image of TI (Bi2Se3) nanowire device

Length = 200nm, width = 110nm, thickness = 15nm

- Scotch tape exfoliate, hunt for nanowires

Fabricating BiSe Devices

What are other unique properties of the surface state? 
How do we know we are measuring the surface state in transport? 



Shubnikov de Haas Oscillations (Bi2Te3) STM: lack of backscattering (BiSb)

ference pattern due to scattering at the surface. Figure
11!c" shows the Fourier transform of the observed pat-
tern #Fig. 11!a"$, while Figs. 11!d" and 11!e" show the
joint density of states computed from the Fermi surface
#Fig. 11!b"$ with and without a suppression of k to −k
backscattering. The similarity between Figs. 11!c" and
11!e" shows that despite strong atomic scale disorder, k
to −k backscattering is absent. Similar conclusions have
emerged from studies of the electronic interference pat-
terns near defects or steps on the surface in other topo-
logical insulators !Urazhdin et al., 2004; Zhang, Cheng,
et al., 2009; Alpichshev et al., 2010". In graphene there is
an approximate version of this protection if the disorder
has a smooth potential which does not mix the valleys at
K and K!, but real graphene will become localized with
strong disorder !Castro Neto et al., 2009".

C. Second generation materials: Bi2Se3, Bi2Te3, and Sb2Te3

The surface structure of Bi1−xSbx was rather compli-
cated and the band gap was rather small. This motivated
a search for topological insulators with a larger band gap
and simpler surface spectrum. A second generation of
3D topological insulator materials !Moore, 2009", espe-
cially Bi2Se3, offers the potential for topologically pro-
tected behavior in ordinary crystals at room temperature
and zero magnetic field. In 2008, work by the Princeton
group used ARPES and first-principles calculations to
study the surface band structure of Bi2Se3 and observe
the characteristic signature of a topological insulator in
the form of a single Dirac cone !Xia, Qian, Hsieh, Wray,
et al., 2009". Concurrent theoretical work by Zhang, Liu,
et al. !2009" used electronic structure methods to show
that Bi2Se3 is just one of several new large band-gap
topological insulators. Zhang, Liu, et al. !2009" also pro-
vided a simple tight-binding model to capture the single
Dirac cone observed in these materials. Detailed and
systematic surface investigations of Bi2Se3 !Hor et al.,
2009; Hsieh, Xia, Qian, Wray, et al., 2009a; Park et al.,
2010", Bi2Te3 !Chen et al., 2009; Hsieh, Xia, Qian, Wray,
et al., 2009a, 2009b; Xia, Qian, Hsieh, Shankar, et al.,
2009", and Sb2Te3 !Hsieh, Xia, Qian, Wray, et al., 2009b"
confirmed the topological band structure of these three
materials. This also explained earlier puzzling observa-
tions on Bi2Te3 !Noh et al., 2008". These works showed
that the topological insulator behavior in these materials
is associated with a band inversion at k=0, leading to the
!1;000" topological class. The !1;000" phase observed in
the Bi2Se3 series differs from the !1;111" phase in
Bi1−xSbx due to its weak topological invariant, which has
implications for the behavior of dislocations !Ran,
Zhang, and Vishwanath, 2009".

Though the phase observed in the Bi2Se3 class has the
same strong topological invariant !0=1 as Bi1−xSbx,
there are three crucial differences that suggest that this
series may become the reference material for future ex-
periments. The Bi2Se3 surface state is found from
ARPES and theory to be a nearly idealized single Dirac
cone as seen from the experimental data in Figs. 12, 13,
and 16. Second, Bi2Se3 is stoichiometric !i.e., a pure
compound rather than an alloy such as Bi1−xSbx" and
hence can be prepared, in principle, at higher purity.
While the topological insulator phase is predicted to be
quite robust to disorder, many experimental probes of
the phase, including ARPES of the surface band struc-
ture, are clearer in high-purity samples. Finally and per-
haps most important for applications, Bi2Se3 has a large
band gap of %0.3 eV !3600 K". This indicates that in its
high-purity form Bi2Se3 can exhibit topological insulator
behavior at room temperature !Fig. 13" and greatly in-
creases the potential for applications. To understand the
likely impact of these new topological insulators, an
analogy can be drawn with the early days of high-
temperature cuprate superconductivity: the original cu-
prate superconductor LBCO was quickly superseded by
second-generation materials such as YBCO and BSCCO
for most applied and scientific purposes.

Spin-ARPES

FIG. 11. !Color online" Absence of backscattering: Quasipar-
ticle interference observed at the surface of Bi0.92Sb0.08 exhibits
the absence of elastic backscattering. !a" Spatially resolved
conductance maps of the !111" surface obtained at 0 mV over a
1000 Å"1000 Å. !b" Spin-ARPES map of the surface state
measured at the Fermi level. The spin textures from spin-
ARPES measurements are shown with arrows. !c" Fourier
transform scanning tunneling spectroscopy !FT-STS" at EF. !d"
The joint density of states !JDOS" at EF. !e" The spin-
dependent scattering probability !SSP" at EF. !f" Closeup of
the JDOS, FT-STS, and SSP at EF, along the #-M direction.
Adapted from Hsieh, Xia, Wray, Qian, et al., 2009b and Rous-
han et al., 2009.
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Other evidence of surface states: 
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implications for the behavior of dislocations !Ran,
Zhang, and Vishwanath, 2009".

Though the phase observed in the Bi2Se3 class has the
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there are three crucial differences that suggest that this
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periments. The Bi2Se3 surface state is found from
ARPES and theory to be a nearly idealized single Dirac
cone as seen from the experimental data in Figs. 12, 13,
and 16. Second, Bi2Se3 is stoichiometric !i.e., a pure
compound rather than an alloy such as Bi1−xSbx" and
hence can be prepared, in principle, at higher purity.
While the topological insulator phase is predicted to be
quite robust to disorder, many experimental probes of
the phase, including ARPES of the surface band struc-
ture, are clearer in high-purity samples. Finally and per-
haps most important for applications, Bi2Se3 has a large
band gap of %0.3 eV !3600 K". This indicates that in its
high-purity form Bi2Se3 can exhibit topological insulator
behavior at room temperature !Fig. 13" and greatly in-
creases the potential for applications. To understand the
likely impact of these new topological insulators, an
analogy can be drawn with the early days of high-
temperature cuprate superconductivity: the original cu-
prate superconductor LBCO was quickly superseded by
second-generation materials such as YBCO and BSCCO
for most applied and scientific purposes.
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ticle interference observed at the surface of Bi0.92Sb0.08 exhibits
the absence of elastic backscattering. !a" Spatially resolved
conductance maps of the !111" surface obtained at 0 mV over a
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measured at the Fermi level. The spin textures from spin-
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Fourier transform of 
scattering off defect 
similar to models of 
k-k’ suppression

Ong, Science (2010) 

Fermi surface 
quantization in 
magnetic field: 

2 ( ) Fn S eBp g+ = !

SF = cross section 
of Fermi surface, g 
= phase factor

For 2D state, only 
normal 
component of B 
contributes to 
oscillations:  B à 
Bcosθ

Yazdani, Nature (2010) 

3D TI Surface States



Aharonov-Bohm oscillations in surface states

Aharonov-Bohm effect: Conductance oscillates as a function of magnetic flux 
enclosed by the ring, where the period of oscillation is F0 = h/e

B
Ψ→Ψ exp i

eB ⋅Area∫


%

&
'
'

(

)
*
*=Ψ exp i2π eΦ

h
%

&
'

(

)
*

k⊥

k//
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(
) For our samples, 

Area ~ 10-15 m2, F0 ~ 2.5T

For a hollow wire, electrons in each sub-band traverse circumference of wire 

Now apply magnetic field through hollow wire:

Requires:
- Well-defined path around circumference 

à hollow wire or surface states
- Phase coherence
- Ballistic or quasi-ballistic transport



E

φ = 0

E

φ = φ0/2

Conductance of TI nanowire at Dirac point is expected to oscillate with a period of φ0(h/e) and 
have  a maximum at φ= φ0/2 (a minimum at φ =0)

Leads to gap at F = 0 for 1st subband 
But extra phase cancelled by AB phase for φ 
= φ0/2, leading to reappearance of mode
à tuning of topologically protected, 1D 
helical mode! 

• Bardarson et al PRL 105, 156803 (2010). 
• Zhang et al PRL 105, 206601 (2010). 
• Rosenberg et al PRB 82, 041104(R) (2010) 

In TIs, spin-momentum locking gives 
electrons an extra phase of p 
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AB Oscillations: Signatures of the Gapless 1D-Topological Mode



AB Oscillations: Signatures of the Gapless 1D-Topological Mode
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• Clear signature of surface states 
and coherent transport

Dominant h/e (AB) 
rather than h/2e (AAS) 
à low disorder

• Measurement of AB oscillation 
at the Dirac point

magnetic 
field

Bi2Se3 nanowire
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h/e oscillations: phase alternations with VGate



- Finite conductance at 
F = 0 consistent with 
small shifts away from 
Dirac point, off-resonant 
conduction across 
contacts and slight band 
bending

- Good fit between theory 
and experiment  

Device 1
Device 2 

Simulations for various Vg

• AB data consistent with simulations for TI surface states
• Consistent with theoretical expectation: G ~ e2/h at n = φ/φ0 = 1/2 at 

Dirac point  à Signature of 1D topological mode 
• Evidence of 1D mode manipulation in TI nanowire
• Clear signature of surface states and coherent transport in 3D TI nanowire

Simulations of AB oscillations (M.J. Gilbert, UIUC)

Are surface states useful for devices? Maybe FETs or interconnects?



Example: TI FET
Benefits: No impurity scattering, 
dissipationless channel down to small scales 

Reality:
- Shows characteristic IV curves
- Low mobility due to low DOS

Potential:
- Theoretical benefits of high 

performance FETs
- Could use topological-to-

nontopological switching
- Need greater control of surface state 

quality, Fermi energy location

S. Cho et al, Nano Lett 11, 1925 (2011)

H. Zhu et al, Sci. Rep. 3, 1757 (2013)

M. Gilbert, Comm. Phys. 4, 70 (2021)



TI Interconnects
Edge roughness and grain-boundary scattering make copper interconnects too resistive as they scale. Are TIs better?

Scattering & e-ph interactions decrease both bulk and surface mobility. 
And density of states in surface states alone too small (compared to Cu)
However, may have use in ultra-narrow wires ( < 10 nm)

But maybe surface states are “useful” in hybrid or quantum topological devices?

M. Gilbert, “Topological 
electronics,” Comm. Phys. 
4, 70 (2021)



Topological Insulator-Superconducting Devices

S-TI-S
topological insulator 

barrier

Coherent electron-hole pair transport 
via topological surface state
“Andreev bound states” + “Majorana 
bound states” (zero-energy)



Topological Insulator-Superconducting Devices

Not the favorite system of most because of the complexity:
• 2D width (multiple channels)
• Multiple surfaces (top, edges, bottom)
• Conducting bulk states and trivial surface states in the TI

Advantages:
• Supports topological excitations without a strong magnetic field. 
• Allows access to barrier for probes and imaging
• Expandable into networks
• Enables multiple modes of operation to control Majorana fermions by phase, current, or voltage
• Schemes proposed to braid and perform logical operations.

Trade-off stability for functionalization !

Lateral S-TI-S junctions for topological quantum computing?

c.f. D. Van Harlingen, Quantum Science Summer School Lecture



1 µm

Probing surface states in a S-TI-S junction
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Ic decreases as normal resistance in the junction increases
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• L ~0.1μm, W ~1.4μm
• Purple area:  supercurrents, boundary ~ Ic

•   No change in Ic when pass into pure topological regime (past bottom of BCB)
• Finite Ic at Dirac point: residual densities in electron-hole puddles due to 

charged impurity potential.
• Critical current does not increase in hole region (Vg < -55V): asymmetric 

contact resistances or lack of clear surface states in valence band

Supercurrents in the topological regime



Compare data to transport simulations considering 
superconducting leads and TI Hamiltonian 

Supercurrents and density of states (DOS) profiles calculated 
in the non-equilibrium Green function formalism

(see Cho et al, Nat. Comm. 2013)

black: data
blue: simulation Ic closely follows surface DOS

Adding surface disorder rapidly 
degrades supercurrent

à surface states carry 
supercurrent!

Quantum Transport Theory: surface states carry supercurrent



TI Majorana Modes?

Evidence of Majoranas 
in 3D TIs not clear. 
- No Majorana 

manipulation
- Disorder can cause 

anomalous junction 
behavior

Small, spatially varying disorder (like a step in the 
material) can add phases, induce anomalous 
Fraunhofer patterns and transport features

Simulated 
Fraunhofer



TI Majorana Modes?

New ideas for finding MZMs in TIs in wires …



Emergent Physics in TI Devices

Can useful new electronic states be induced? For known or unknown applications?
Example: Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase
• Finite momentum Cooper pairs with spatially non-uniform order parameter
• Very long-range superconducting pairing
• Could lead to superconducting diode effect (Yuan & Fu, PNAS, 2022)

Evidence of FFLO-like state (Cooper 
pairing with shifted momentum) in 
2D TIs when in-plane field 
perpendicular to current is added

Hart et al., Nat. Phys. 13, 3877 (2017).

What about in a 3D topological insulator?
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When magnetic field is 
applied through a uniform 
junction, the local 
Josephson current 
density oscillates 
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due to single-valuedness 
of the phase
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Finite momentum pairing studied via Fraunhofer Spectroscopy



current

Bz

By

Adding an in-plane field (along current 
direction) shifts the momentum 
(and corresponding Dirac cone & Fermi surface)

H!"#$% = −ℏ𝑣& 𝑘' −
𝑔𝜇𝐵(
ℏ𝑣)

𝜎( + ℏ𝑣)𝑘(𝜎'

This gives center-of-mass 
momentum to Cooper pairs à Δ*,, ≈ Δ-𝑒

"
./01!
ℏ3"

'

and adds a phase across the junction 𝜙4 𝑥4 − 𝜙. 𝑥. =
2𝐵( 𝑥4 − 𝑥. 𝑔𝜇

ℏ𝑣)
“Zeeman term”

Fraunhofer spectroscopy in 3D TIs



𝜙4 𝑥4 − 𝜙. 𝑥. =
𝜋𝐵( 𝑥4 − 𝑥. 𝑡

Φ-

An in-plane field also adds an Aharonov-
Bohm term to the phase across the 
junction (this scales with thickness t):

𝜙! 𝑥! − 𝜙" 𝑥" =
2𝜋𝐵#𝑑 𝑥! + 𝑥"

2Φ$
+
2𝐵% 𝑥! − 𝑥" 𝑔𝜇

ℏ𝑣&
+
𝜋𝐵% 𝑥! − 𝑥" 𝑡

Φ$

Using the total phase difference: 

to model the transport current

𝐼 𝜙, 𝐵%, 𝐵# = 2
'(!"

(!
"
2
'(""

("
"
𝑑𝑥!𝑑𝑥"

1
𝑑" + 𝑥! − 𝑥" " 𝑠𝑖 𝑛( 𝛥𝜙 + 𝜙! 𝑥! − 𝜙"(𝑥"))	

gives simulated Fraunhofer patterns with in-plane field …

“AB term”

Fraunhofer spectroscopy in 3D TIs



Simulations show spectral weight is shifted to larger Bz values as in-plane field By increased

Leading to “trident” 
patterns in 2D Resistance 
plots of By vs Bz

𝑚 =
Δ𝐵%
Δ𝐵#

=
⁄𝜋𝑑 Φ$

2𝑔𝜇
ℏ𝑣&

+ 𝜋𝑡
Φ$

Where the slope depends 
on Zeeman and AB terms:

Simulated Fraunhofer spectroscopy (M. Gilbert, UIUC)
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• Bi2Se3 flake, 120 nm x 
1.5; thickness: 25 nm

• NbTiN/NbTi 
superconducting leads

Critical current ~ 1uA n-doped regime

Standard 
Fraunhofer 
pattern without 
in-plane field

Fraunhofer device characteristics



Data similar to simulation of finite momentum shifted Cooper pairs!

Data Simulation

Fraunhofer spectroscopy



Data similar to simulation of finite momentum shifted Cooper pairs!

Data Simulation

Fraunhofer spectroscopy



Data Simulation

The “tilt” is due to the shape of the junction …

Asymmetry in 
lead widths, 
a = W1/W2, 
gives 
asymmetry in 
Bz

a = 0.3 Flux 
focusing 
leads to 
tilt, i.e., Bz 
à Bz - bBy

b = 0.02

Data similar to simulation of finite momentum shifted Cooper pairs!

Fraunhofer spectroscopy



The slope versus thickness gives relative 
contribution of Zeeman and AB terms:

𝑚 =
Δ𝐵#
Δ𝐵$

=
⁄𝜋𝑑 Φ%

2𝑔𝜇
ℏ𝑣&

+ 𝜋𝑡
Φ%

t = 11nm

Plot of slope vs thickness shows 
suppressed values and trend with t not 
consistent with just AB à Zeeman 
contribution important

Fraunhofer spectroscopy



Device number t (nm) Average W 

(nm)

d (nm)
𝛼 =

𝑊!
𝑊"

1 9 920 110 1.07

2 11 1930 240 1.04

3 12 570 160 1.15

4 20 730 150 1.02

5 21 500 270 1.00

We observe finite 
momentum pairing!

We can simulate & 
understand Fraunhofer 
spectra for a wide variety 
of junctions! 

Data

Simulation

Fraunhofer spectroscopy



Research Challenges in Topological Insulators

Goldhaber-Gordon, Rechtsman, Mason, Armitage, Future Directions Workshop series: “Topological Sciences,” (2019)

Some advances are needed, such as:
• Making materials having limited disorder
• Increasing topological gap energies
• Demonstrating topological properties at high temperatures
• Simple measurements that are sensitive to topology

Topological insulators do not seem to have immediate application in conventional 
computing elements such as FETs & interconnects, or a Josephson devices

It’s really hard to displace Si/CMOS!

But … may be useful for special applications (e.g., low current devices) and also for studying new emergent states.

There’s also a lot of potential in Topological Spintronics




